Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nano Lett ; 23(4): 1395-1400, 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36763845

RESUMEN

The discovery of ferroelectric doped HfO2 enabled the emergence of scalable and CMOS-compatible ferroelectric field-effect transistor (FeFET) technology which has the potential to meet the growing need for fast, low-power, low-cost, and high-density nonvolatile memory, and neuromorphic devices. Although HfO2 FeFETs have been widely studied in the past few years, their fundamental switching speed is yet to be explored. Importantly, the shortest polarization time demonstrated to date in HfO2-based FeFET was ∼10 ns. Here, we report that a single subnanosecond pulse can fully switch HfO2-based FeFET. We also study the polarization switching kinetics across 11 orders of magnitude in time (300 ps to 8 s) and find a remarkably steep time-voltage relation, which is captured by the classical nucleation theory across this wide range of pulse widths. These results demonstrate the high-speed capabilities of FeFETs and help better understand their fundamental polarization switching speed limits and switching kinetics.

2.
Nano Lett ; 23(4): 1152-1158, 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36662611

RESUMEN

Recently, nonvolatile resistive switching memory effects have been actively studied in two-dimensional (2D) transition metal dichalcogenides and boron nitrides to advance future memory and neuromorphic computing applications. Here, we report on radiofrequency (RF) switches utilizing hexagonal boron nitride (h-BN) memristors that afford operation in the millimeter-wave (mmWave) range. Notably, silver (Ag) electrodes to h-BN offer outstanding nonvolatile bipolar resistive switching characteristics with a high ON/OFF switching ratio of 1011 and low switching voltage below 0.34 V. In addition, the switch exhibits a low insertion loss of 0.50 dB and high isolation of 23 dB across the D-band spectrum (110 to 170 GHz). Furthermore, the S21 insertion loss can be tuned through five orders of current compliance magnitude, which increases the application prospects for atomic switches. These results can enable the switch to become a key component for future reconfigurable wireless and 6G communication systems.

3.
Nanotechnology ; 32(26)2021 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-33601363

RESUMEN

Layered two-dimensional (2D) materials such as MoS2have attracted much attention for nano- and opto-electronics. Recently, intercalation (e.g. of ions, atoms, or molecules) has emerged as an effective technique to modulate material properties of such layered 2D films reversibly. We probe both the electrical and thermal properties of Li-intercalated bilayer MoS2nanosheets by combining electrical measurements and Raman spectroscopy. We demonstrate reversible modulation of carrier density over more than two orders of magnitude (from 0.8 × 1012to 1.5 × 1014cm-2), and we simultaneously obtain the thermal boundary conductance between the bilayer and its supporting SiO2substrate for an intercalated system for the first time. This thermal coupling can be reversibly modulated by nearly a factor of eight, from 14 ± 4.0 MW m-2K-1before intercalation to 1.8 ± 0.9 MW m-2K-1when the MoS2is fully lithiated. These results reveal electrochemical intercalation as a reversible tool to modulate and control both electrical and thermal properties of 2D layers.

4.
Nano Lett ; 20(2): 1461-1467, 2020 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-31951419

RESUMEN

Two-dimensional (2D) materials have recently been incorporated into resistive memory devices because of their atomically thin nature, but their switching mechanism is not yet well understood. Here we study bipolar switching in MoTe2-based resistive memory of varying thickness and electrode area. Using scanning thermal microscopy (SThM), we map the surface temperature of the devices under bias, revealing clear evidence of localized heating at conductive "plugs" formed during switching. The SThM measurements are correlated to electro-thermal simulations, yielding a range of plug diameters (250 to 350 nm) and temperatures at constant bias and during switching. Transmission electron microscopy images reveal these plugs result from atomic migration between electrodes, which is a thermally-activated process. However, the initial forming may be caused by defect generation or Te migration within the MoTe2. This study provides the first thermal and localized switching insights into the operation of such resistive memory and demonstrates a thermal microscopy technique that can be applied to a wide variety of traditional and emerging memory devices.

5.
Nano Lett ; 17(6): 3854-3861, 2017 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-28537732

RESUMEN

Two-dimensional (2D) molybdenum trioxide (MoO3) with mono- or few-layer thickness can potentially advance many applications, ranging from optoelectronics, catalysis, sensors, and batteries to electrochromic devices. Such ultrathin MoO3 sheets can also be integrated with other 2D materials (e.g., as dopants) to realize new or improved electronic devices. However, there is lack of a rapid and scalable method to controllably grow mono- or few-layer MoO3. Here, we report the first demonstration of using a rapid (<2 min) flame synthesis method to deposit mono- and few-layer MoO3 sheets (several microns in lateral dimension) on a wide variety of layered materials, including mica, MoS2, graphene, and WSe2, based on van der Waals epitaxy. The flame-grown ultrathin MoO3 sheet functions as an efficient hole doping layer for WSe2, enabling WSe2 to reach the lowest sheet and contact resistance reported to date among all the p-type 2D materials (∼6.5 kΩ/□ and ∼0.8 kΩ·µm, respectively). These results demonstrate that flame synthesis is a rapid and scalable pathway to growing atomically thin 2D metal oxides, opening up new opportunities for advancing 2D electronics.

6.
Nano Lett ; 17(6): 3429-3433, 2017 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-28388845

RESUMEN

The advancement of nanoscale electronics has been limited by energy dissipation challenges for over a decade. Such limitations could be particularly severe for two-dimensional (2D) semiconductors integrated with flexible substrates or multilayered processors, both being critical thermal bottlenecks. To shed light into fundamental aspects of this problem, here we report the first direct measurement of spatially resolved temperature in functioning 2D monolayer MoS2 transistors. Using Raman thermometry, we simultaneously obtain temperature maps of the device channel and its substrate. This differential measurement reveals the thermal boundary conductance of the MoS2 interface with SiO2 (14 ± 4 MW m-2 K-1) is an order magnitude larger than previously thought, yet near the low end of known solid-solid interfaces. Our study also reveals unexpected insight into nonuniformities of the MoS2 transistors (small bilayer regions) which do not cause significant self-heating, suggesting that such semiconductors are less sensitive to inhomogeneity than expected. These results provide key insights into energy dissipation of 2D semiconductors and pave the way for the future design of energy-efficient 2D electronics.

7.
ACS Nano ; 18(11): 8029-8037, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38458609

RESUMEN

Phase-change memory (PCM) devices have great potential as multilevel memory cells and artificial synapses for neuromorphic computing hardware. However, their practical use is hampered by resistance drift, a phenomenon commonly attributed to structural relaxation or electronic mechanisms primarily in the context of bulk effects. In this study, we reevaluate the electrical manifestation of resistance drift in sub-100 nm Ge2Sb2Te5 (GST) PCM devices, focusing on the contributions of bulk vs interface effects. We employ a combination of measurement techniques to elucidate the current transport mechanism and the electrical manifestation of resistance drift. Our steady-state temperature-dependent measurements reveal that resistance in these devices is predominantly influenced by their electrical contacts, with conduction occurring through thermionic emission (Schottky) at the contacts. Additionally, temporal current-voltage characterization allows us to link the resistance drift to a time-dependent increase in the Schottky barrier height. These findings provide valuable insights, pinpointing the primary contributor to resistance drift in PCM devices: the Schottky barrier height for hole injection at the interface. This underscores the significance of contacts (interface) in the electrical manifestation of drift in PCM devices.

8.
Nanoscale ; 15(15): 7139-7146, 2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37006192

RESUMEN

Heat dissipation threatens the performance and lifetime of many electronic devices. As the size of devices shrinks to the nanoscale, we require spatially and thermally resolved thermometry to observe their fine thermal features. Scanning thermal microscopy (SThM) has proven to be a versatile measurement tool for characterizing the temperature at the surface of devices with nanoscale resolution. SThM can obtain qualitative thermal maps of a device using an operating principle based on a heat exchange process between a thermo-sensitive probe and the sample surface. However, the quantification of these thermal features is one of the most challenging parts of this technique. Developing reliable calibration approaches for SThM is therefore an essential aspect to accurately determine the temperature at the surface of a sample or device. In this work, we calibrate a thermo-resistive SThM probe using heater-thermometer metal lines with different widths (50 nm to 750 nm), which mimic variable probe-sample thermal exchange processes. The sensitivity of the SThM probe when scanning the metal lines is also evaluated under different probe and line temperatures. Our results reveal that the calibration factor depends on the probe measuring conditions and on the size of the surface heating features. This approach is validated by mapping the temperature profile of a phase change electronic device. Our analysis provides new insights on how to convert the thermo-resistive SThM probe signal to the scanned device temperature more accurately.

9.
Sci Adv ; 8(13): eabk1514, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35353574

RESUMEN

Resistive random access memory (RRAM) is an important candidate for both digital, high-density data storage and for analog, neuromorphic computing. RRAM operation relies on the formation and rupture of nanoscale conductive filaments that carry enormous current densities and whose behavior lies at the heart of this technology. Here, we directly measure the temperature of these filaments in realistic RRAM with nanoscale resolution using scanning thermal microscopy. We use both conventional metal and ultrathin graphene electrodes, which enable the most thermally intimate measurement to date. Filaments can reach 1300°C during steady-state operation, but electrode temperatures seldom exceed 350°C because of thermal interface resistance. These results reveal the importance of thermal engineering for nanoscale RRAM toward ultradense data storage or neuromorphic operation.

10.
ACS Nano ; 15(1): 1587-1596, 2021 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-33405894

RESUMEN

Semiconductors require stable doping for applications in transistors, optoelectronics, and thermoelectrics. However, this has been challenging for two-dimensional (2D) materials, where existing approaches are either incompatible with conventional semiconductor processing or introduce time-dependent, hysteretic behavior. Here we show that low-temperature (<200 °C) substoichiometric AlOx provides a stable n-doping layer for monolayer MoS2, compatible with circuit integration. This approach achieves carrier densities >2 × 1013 cm-2, sheet resistance as low as ∼7 kΩ/□, and good contact resistance ∼480 Ω·µm in transistors from monolayer MoS2 grown by chemical vapor deposition. We also reach record current density of nearly 700 µA/µm (>110 MA/cm2) along this three-atom-thick semiconductor while preserving transistor on/off current ratio >106. The maximum current is ultimately limited by self-heating (SH) and could exceed 1 mA/µm with better device heat sinking. With their 0.1 nA/µm off-current, such doped MoS2 devices approach several low-power transistor metrics required by the international technology roadmap.

11.
ACS Appl Mater Interfaces ; 12(32): 36355-36361, 2020 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-32678569

RESUMEN

Atomically thin semiconductors are of interest for future electronics applications, and much attention has been given to monolayer (1L) sulfides, such as MoS2, grown by chemical vapor deposition (CVD). However, reports on the electrical properties of CVD-grown selenides, and MoSe2 in particular, are scarce. Here, we compare the electrical properties of 1L and bilayer (2L) MoSe2 grown by CVD and capped by sub-stoichiometric AlOx. The 2L channels exhibit ∼20× lower contact resistance (RC) and ∼30× larger current density compared with 1L channels. RC is further reduced by >5× with AlOx capping, which enables improved transistor current density. Overall, 2L AlOx-capped MoSe2 transistors (with ∼500 nm channel length) achieve improved current density (∼65 µA/µm at VDS = 4 V), a good Ion/Ioff ratio of >106, and an RC of ∼60 kΩ·µm. The weaker performance of 1L devices is due to their sensitivity to processing and ambient. Our results suggest that 2L (or few layers) is preferable to 1L for improved electronic properties in applications that do not require a direct band gap, which is a key finding for future two-dimensional electronics.

12.
ACS Nano ; 14(11): 14798-14808, 2020 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-32905703

RESUMEN

Metal contacts are a key limiter to the electronic performance of two-dimensional (2D) semiconductor devices. Here, we present a comprehensive study of contact interfaces between seven metals (Y, Sc, Ag, Al, Ti, Au, Ni, with work functions from 3.1 to 5.2 eV) and monolayer MoS2 grown by chemical vapor deposition. We evaporate thin metal films onto MoS2 and study the interfaces by Raman spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, transmission electron microscopy, and electrical characterization. We uncover that (1) ultrathin oxidized Al dopes MoS2 n-type (>2 × 1012 cm-2) without degrading its mobility, (2) Ag, Au, and Ni deposition causes varying levels of damage to MoS2 (e.g. broadening Raman E' peak from <3 to >6 cm-1), and (3) Ti, Sc, and Y react with MoS2. Reactive metals must be avoided in contacts to monolayer MoS2, but control studies reveal the reaction is mostly limited to the top layer of multilayer films. Finally, we find that (4) thin metals do not significantly strain MoS2, as confirmed by X-ray diffraction. These are important findings for metal contacts to MoS2 and broadly applicable to many other 2D semiconductors.

13.
Sci Adv ; 5(8): eaax1325, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31453337

RESUMEN

Heterogeneous integration of nanomaterials has enabled advanced electronics and photonics applications. However, similar progress has been challenging for thermal applications, in part due to shorter wavelengths of heat carriers (phonons) compared to electrons and photons. Here, we demonstrate unusually high thermal isolation across ultrathin heterostructures, achieved by layering atomically thin two-dimensional (2D) materials. We realize artificial stacks of monolayer graphene, MoS2, and WSe2 with thermal resistance greater than 100 times thicker SiO2 and effective thermal conductivity lower than air at room temperature. Using Raman thermometry, we simultaneously identify the thermal resistance between any 2D monolayers in the stack. Ultrahigh thermal isolation is achieved through the mismatch in mass density and phonon density of states between the 2D layers. These thermal metamaterials are an example in the emerging field of phononics and could find applications where ultrathin thermal insulation is desired, in thermal energy harvesting, or for routing heat in ultracompact geometries.

14.
Sci Rep ; 7(1): 15360, 2017 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-29127371

RESUMEN

The operation of resistive and phase-change memory (RRAM and PCM) is controlled by highly localized self-heating effects, yet detailed studies of their temperature are rare due to challenges of nanoscale thermometry. Here we show that the combination of Raman thermometry and scanning thermal microscopy (SThM) can enable such measurements with high spatial resolution. We report temperature-dependent Raman spectra of HfO2, TiO2 and Ge2Sb2Te5 (GST) films, and demonstrate direct measurements of temperature profiles in lateral PCM devices. Our measurements reveal that electrical and thermal interfaces dominate the operation of such devices, uncovering a thermal boundary resistance of 28 ± 8 m2K/GW at GST-SiO2 interfaces and an effective thermopower 350 ± 50 µV/K at GST-Pt interfaces. We also discuss possible pathways to apply Raman thermometry and SThM techniques to nanoscale and vertical resistive memory devices.

15.
ACS Appl Mater Interfaces ; 9(49): 43013-43020, 2017 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-29053241

RESUMEN

The electrical and thermal behavior of nanoscale devices based on two-dimensional (2D) materials is often limited by their contacts and interfaces. Here we report the temperature-dependent thermal boundary conductance (TBC) of monolayer MoS2 with AlN and SiO2, using Raman thermometry with laser-induced heating. The temperature-dependent optical absorption of the 2D material is crucial in such experiments, which we characterize here for the first time above room temperature. We obtain TBC ∼ 15 MW m-2 K-1 near room temperature, increasing as ∼ T0.65 in the range 300-600 K. The similar TBC of MoS2 with the two substrates indicates that MoS2 is the "softer" material with weaker phonon irradiance, and the relatively low TBC signifies that such interfaces present a key bottleneck in energy dissipation from 2D devices. Our approach is needed to correctly perform Raman thermometry of 2D materials, and our findings are key for understanding energy coupling at the nanoscale.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA