RESUMEN
Slower translation rates reduce protein misfolding. Such reductions in speed can be mediated by the presence of non-optimal codons, which allow time for proper folding to occur. Although this phenomenon is conserved from bacteria to humans, it is not known whether there are additional eukaryote-specific mechanisms which act in the same way. MicroRNAs (miRNAs), not present in prokaryotes, target both coding sequences (CDS) and 3' untranslated regions (UTR). Given their low suppressive efficiency, it has been unclear why miRNAs are equally likely to bind to a CDS. Here, we show that miRNAs transiently stall translating ribosomes, preventing protein misfolding with little negative effect on protein abundance. We first analyzed ribosome profiles and miRNA binding sites to examine whether miRNAs stall ribosomes. Furthermore, either global or specific miRNA deficiency accelerated ribosomes and induced aggregation of a misfolding-prone polypeptide reporter. These defects were rescued by slowing ribosomes using non-cleaving shRNAs as miRNA mimics. We finally show that proinsulin misfolding, associated with type II diabetes, was resolved by non-cleaving shRNAs. Our findings provide a eukaryote-specific mechanism of co-translational protein folding and a previously unknown mechanism of action to target protein misfolding diseases.
Asunto(s)
Diabetes Mellitus Tipo 2 , MicroARNs , Humanos , MicroARNs/metabolismo , Biosíntesis de Proteínas , Eucariontes/genética , Eucariontes/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , ARN Mensajero/genética , Ribosomas/metabolismo , Proteínas/metabolismoRESUMEN
Control of mRNA poly(A) tails is essential for regulation of mRNA metabolism, specifically translation efficiency and mRNA stability. Gene expression in maturing oocytes relies largely on post-transcriptional regulation, as genes are transcriptionally silent during oocyte maturation. The CCR4-NOT complex is a major mammalian deadenylase, which regulates poly(A) tails of maternal mRNAs; however, the function of the CCR4-NOT complex in translational regulation has not been well understood. Here, we show that this complex suppresses translational activity of maternal mRNAs during oocyte maturation. Oocytes lacking all CCR4-NOT deadenylase activity owing to genetic deletion of its catalytic subunits, Cnot7 and Cnot8, showed a large-scale gene expression change caused by increased translational activity during oocyte maturation. Developmental arrest during meiosis I in these oocytes resulted in sterility of oocyte-specific Cnot7 and Cnot8 knockout female mice. We further showed that recruitment of CCR4-NOT to maternal mRNAs is mediated by the 3'UTR element CPE, which suppresses translational activation of maternal mRNAs. We propose that suppression of untimely translational activation of maternal mRNAs via deadenylation by CCR4-NOT is essential for proper oocyte maturation.
Asunto(s)
Oocitos , ARN Mensajero Almacenado , Animales , Ratones , Femenino , ARN Mensajero Almacenado/metabolismo , Oocitos/metabolismo , Oogénesis/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Meiosis , Ratones Noqueados , Mamíferos/genética , Exorribonucleasas/genética , Exorribonucleasas/metabolismo , Proteínas Represoras/metabolismoRESUMEN
Interferon regulatory factor-5 (IRF5), a transcription factor critical for the induction of innate immune responses, contributes to the pathogenesis of the autoimmune disease systemic lupus erythematosus (SLE) in humans and mice. Lyn, a Src family kinase, is also implicated in human SLE, and Lyn-deficient mice develop an SLE-like disease. Here, we found that Lyn physically interacted with IRF5 to inhibit ubiquitination and phosphorylation of IRF5 in the TLR-MyD88 pathway, thereby suppressing the transcriptional activity of IRF5 in a manner independent of Lyn's kinase activity. Conversely, Lyn did not inhibit NF-κB signaling, another major branch downstream of MyD88. Monoallelic deletion of Irf5 alleviated the hyperproduction of cytokines in TLR-stimulated Lyn(-/-) dendritic cells and the development of SLE-like symptoms in Lyn(-/-) mice. Our results reveal a role for Lyn as a specific suppressor of the TLR-MyD88-IRF5 pathway and illustrate the importance of fine-tuning IRF5 activity for the maintenance of immune homeostasis.
Asunto(s)
Autoinmunidad , Células Dendríticas/inmunología , Factores Reguladores del Interferón/metabolismo , Lupus Eritematoso Sistémico/inmunología , Familia-src Quinasas/metabolismo , Animales , Células Cultivadas , Citocinas/metabolismo , Humanos , Tolerancia Inmunológica , Inmunidad Innata , Factores Reguladores del Interferón/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor 88 de Diferenciación Mieloide/metabolismo , FN-kappa B/metabolismo , Fosforilación , Unión Proteica , Transducción de Señal , Receptores Toll-Like/metabolismo , Activación Transcripcional , Ubiquitinación , Familia-src Quinasas/genéticaRESUMEN
The CARMA1-Bcl10-MALT1 (CBM) signalosome is a crucial module of NF-κB activation in B cell receptor (BCR) signaling. Biophysical studies have shown that the E3 ubiquitin ligase TRAF6 cooperatively modifies the CBM signalosome; however, the specific details regarding how TRAF6 is involved in BCR signal-induced CBM formation remain unclear. In this study, we aimed to reveal the influences of TRAF6 on CBM formation and TAK1 and IKK activities using DT40 B cells which lack all the exons of TRAF6. In TRAF6-null cells we found: (i) attenuation of TAK1 activity and abolishment of IKK activity and (ii) sustained binding of CARMA1 to Bcl10. To account for the molecular mechanism causing these dynamics, we performed a mathematical model analysis. The mathematical model analysis showed that the regulation of IKK activation by TRAF6 can reproduce TAK1 and IKK activities in TRAF6 null cells, and that the TRAF6 related signal-dependent inhibitor suppresses CARMA1 binding to Bcl10 in wild-type cells. These results suggest that TRAF6 contributes to the positive regulation of IKK activation via TAK1, alongside the negative signal-dependent regulation of CARMA1 binding to Bcl10.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Factor 6 Asociado a Receptor de TNF , Factor 6 Asociado a Receptor de TNF/genética , Factor 6 Asociado a Receptor de TNF/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras de Señalización CARD/genética , Proteínas Adaptadoras de Señalización CARD/metabolismo , FN-kappa B/metabolismo , Guanilato Ciclasa/metabolismoRESUMEN
mRNA decay systems control mRNA abundance by counterbalancing transcription. Several recent studies show that mRNA decay pathways are crucial to conventional T and B cell development in vertebrates, in addition to suppressing autoimmunity and excessive inflammatory responses. Selective mRNA degradation triggered by the CCR4-NOT deadenylase complex appears to be required in lymphocyte development, cell quiescence, V(D)J (variable-diversity-joining) recombination, and prevention of inappropriate apoptosis in mice. Moreover, a recent study suggests that mRNA decay may be involved in preventing human hyperinflammatory disease. These findings imply that mRNA decay pathways in humans and mice do not simply maintain mRNA homeostatic turnover but can also precisely regulate immune development and immunological responses by selectively targeting mRNAs.
Asunto(s)
Estabilidad del ARN , Animales , Ratones , ARN MensajeroRESUMEN
Signal-induced proliferation-associated 1 (SIPA1)-like 1 (SIPA1L1; also known as SPAR1) has been proposed to regulate synaptic functions that are important in maintaining normal neuronal activities, such as regulating spine growth and synaptic scaling, as a component of the PSD-95/NMDA-R-complex. However, its physiological role remains poorly understood. Here, we performed expression analyses using super-resolution microscopy (SRM) in mouse brain and demonstrated that SIPA1L1 is mainly localized to general submembranous regions in neurons, but surprisingly, not to PSD. Our screening for physiological interactors of SIPA1L1 in mouse brain identified spinophilin and neurabin-1, regulators of G-protein-coupled receptor (GPCR) signaling, but rejected PSD-95/NMDA-R-complex components. Furthermore, Sipa1l1-/- mice showed normal spine size distribution and NMDA-R-dependent synaptic plasticity. Nevertheless, Sipa1l1-/- mice showed aberrant responses to α2-adrenergic receptor (a spinophilin target) or adenosine A1 receptor (a neurabin-1 target) agonist stimulation, and striking behavioral anomalies, such as hyperactivity, enhanced anxiety, learning impairments, social interaction deficits, and enhanced epileptic seizure susceptibility. Male mice were used for all experiments. Our findings revealed unexpected properties of SIPA1L1, suggesting a possible association of SIPA1L1 deficiency with neuropsychiatric disorders related to dysregulated GPCR signaling, such as epilepsy, attention deficit hyperactivity disorder (ADHD), autism, or fragile X syndrome (FXS).SIGNIFICANCE STATEMENT Signal-induced proliferation-associated 1 (SIPA1)-like 1 (SIPA1L1) is thought to regulate essential synaptic functions as a component of the PSD-95/NMDA-R-complex. In our screening for physiological SIPA1L1-interactors, we identified G-protein-coupled receptor (GPCR)-signaling regulators. Moreover, SIPA1L1 knock-out (KO) mice showed striking behavioral anomalies, which may be relevant to GPCR signaling. Our findings revealed an unexpected role of SIPA1L1, which may open new avenues for research on neuropsychiatric disorders that involve dysregulated GPCR signaling. Another important aspect of this paper is that we showed effective methods for checking PSD association and identifying native protein interactors that are difficult to solubilize. These results may serve as a caution for future claims about interacting proteins and PSD proteins, which could eventually save time and resources for researchers and avoid confusion in the field.
Asunto(s)
Proteínas Activadoras de GTPasa/metabolismo , N-Metilaspartato , Proteínas del Tejido Nervioso , Animales , Homólogo 4 de la Proteína Discs Large , Masculino , Ratones , Ratones Noqueados , Proteínas de Microfilamentos/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Receptor de Adenosina A1 , Receptores Acoplados a Proteínas G/metabolismoRESUMEN
Toward the end of mitosis, neighboring chromosomes gather closely to form a compact cluster. This is important for reassembling the nuclear envelope around the entire chromosome mass but not individual chromosomes. By analyzing mice and cultured cells lacking the expression of chromokinesin Kid/kinesin-10, we show that Kid localizes to the boundaries of anaphase and telophase chromosomes and contributes to the shortening of the anaphase chromosome mass along the spindle axis. Loss of Kid-mediated anaphase chromosome compaction often causes the formation of multinucleated cells, specifically at oocyte meiosis II and the first couple of mitoses leading to embryonic death. In contrast, neither male meiosis nor somatic mitosis after the morula-stage is affected by Kid deficiency. These data suggest that Kid-mediated anaphase/telophase chromosome compaction prevents formation of multinucleated cells. This protection is especially important during the very early stages of development, when the embryonic cells are rich in ooplasm.
Asunto(s)
Cromosomas de los Mamíferos/metabolismo , Proteínas de Unión al ADN/metabolismo , Cinesinas/metabolismo , Membrana Nuclear/metabolismo , Anafase , Animales , Blastómeros/metabolismo , Cruzamientos Genéticos , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Femenino , Células HeLa , Humanos , Masculino , Ratones , TelofaseRESUMEN
The curriculum at the Department of Pathophysiology in the Periodontal Sciences program at Okayama University includes normative preclinical training (NPT) using phantoms. NPT is given to the whole class of 5 th year students divided in groups of 8 students/instructor. In 2019, an innovative personalized preclinical training (PPT) pilot study was implemented for this group of students whereby two students, each with their own dental unit, were coached by one instructor. The main topics covered were dental ergonomics and endodontics. We aimed to evaluate the effectiveness of PPT in dental ergonomics and endodontics toward increasing the knowledge and future clinical skills of students who had already undergone NPT. A test on endodontics was taken before and after PPT. A questionnaire was completed to assess their perception of improvement regarding the above-mentioned topics. Test scores and questionnaire results both showed that the students' level of knowledge and awareness of future clinical skills was significantly higher after PPT. This pilot study demonstrated that PPT increased the students' knowledge and future clinical skills. As preclinical training forms the foundation for clinical practice, investment in future research regarding this personalized approach is likely to enhance students' understanding and clinical performance.
Asunto(s)
Endodoncia , Estudiantes de Odontología , Humanos , Proyectos Piloto , Curriculum , ErgonomíaRESUMEN
Various growth and transcription factors are involved in tooth development and developmental abnormalities; however, the protein dynamics do not always match the mRNA expression level. Using a proteomic approach, this study comprehensively analyzed protein expression in epithelial and mesenchymal tissues of the tooth germ during development. First molar tooth germs from embryonic day 14 and 16 Crlj:CD1 (ICR) mouse embryos were collected and separated into epithelial and mesenchymal tissues by laser microdissection. Mass spectrometry of the resulting proteins was carried out, and three types of highly expressed proteins [ATP synthase subunit beta (ATP5B), receptor of activated protein C kinase 1 (RACK1), and calreticulin (CALR)] were selected for immunohistochemical analysis. The expression profiles of these proteins were subsequently evaluated during all stages of amelogenesis using the continuously growing incisors of 3-week-old male ICR mice. Interestingly, these three proteins were specifically expressed depending on the stage of amelogenesis. RACK1 was highly expressed in dental epithelial and mesenchymal tissues during the proliferation and differentiation stages of odontogenesis, except for the pigmentation stage, whereas ATP5B and CALR immunoreactivity was weak in the enamel organ during the early stages, but became intense during the maturation and pigmentation stages, although the timing of the increased protein expression was different between the two. Overall, RACK1 plays an important role in maintaining the cell proliferation and differentiation in the apical end of incisors. In contrast, ATP5B and CALR are involved in the transport of minerals and the removal of organic materials as well as matrix deposition for CALR.
Asunto(s)
Proteómica , Diente , Ratones , Animales , Masculino , Ratones Endogámicos ICR , Odontogénesis/genética , Germen Dentario/metabolismo , Órgano del Esmalte/metabolismo , Proteínas/metabolismo , Regulación del Desarrollo de la Expresión Génica , Diente/metabolismoRESUMEN
The major active form of vitamin D, 1,25-dihydroxyvitamin D3 (1,25D3), is known for its wide bioactivity in periodontal tissues. Although the exact mechanisms underlying its protective action against periodontitis remain unclear, recent studies have shown that 1,25D3 regulates autophagy. Autophagy is vital for intracellular pathogen invasion control, inflammation regulation, and bone metabolic balance in periodontal tissue homeostasis, and its regulation could be an interesting pathway for future periodontal studies. Since vitamin D deficiency is a worldwide health problem, its role as a potential regulator of autophagy provides new insights into periodontal diseases. Based on this premise, this narrative literature review aimed to investigate the possible connection between 1,25D3 and autophagy in periodontitis. A comprehensive literature search was conducted on PubMed using the following keywords (e.g., vitamin D, autophagy, periodontitis, pathogens, epithelial cells, immunity, inflammation, and bone loss). In this review, the latest studies on the protective action of 1,25D3 against periodontitis and the regulation of autophagy by 1,25D3 are summarized, and the potential role of 1,25D3-activated autophagy in the pathogenesis of periodontitis is analyzed. 1,25D3 can exert a protective effect against periodontitis through different signaling pathways in the pathogenesis of periodontitis, and at least part of this regulatory effect is achieved through the activation of the autophagic response. This review will help clarify the relationship between 1,25D3 and autophagy in the homeostasis of periodontal tissues and provide perspectives for researchers to optimize prevention and treatment strategies in the future.
Asunto(s)
Calcitriol , Periodontitis , Humanos , Vitamina D , Autofagia , InflamaciónRESUMEN
BACKGROUND: Plasminogen serves as the precursor to plasmin, an essential element in the fibrinolytic process, and is synthesized primarily in the liver. Plasminogen activation occurs through the action of plasminogen activator, converting it into plasmin. This conversion greatly enhances the fibrinolytic system within tissues and blood vessels, facilitating the dissolution of fibrin clots. Consequently, congenital deficiency of plasminogen results in impaired fibrin degradation. Patients with plasminogen deficiency typically exhibit fibrin deposits in various mucosal sites throughout the body, including the oral cavity, eyes, vagina, and digestive organs. Behcet's disease is a chronic recurrent systemic inflammatory disease with four main symptoms: aphthous ulcers of the oral mucosa, vulvar ulcers, skin symptoms, and eye symptoms, and has been reported worldwide. This disease is highly prevalent around the Silk Road from the Mediterranean to East Asia. We report a case of periodontitis in a patient with these two rare diseases that worsened quickly, leading to alveolar bone destruction. Genetic testing revealed a novel variant characterized by a stop-gain mutation, which may be a previously unidentified etiologic gene associated with decreased plasminogen activity. CASE PRESENTATION: This case report depicts a patient diagnosed with ligneous gingivitis during childhood, originating from plasminogen deficiency and progressing to periodontitis. Genetic testing revealed a suspected association with the PLG c.1468C > T (p.Arg490*) stop-gain mutation. The patient's periodontal condition remained stable with brief intervals of supportive periodontal therapy. However, the emergence of Behçet's disease induced acute systemic inflammation, necessitating hospitalization and treatment with steroids. During hospitalization, the dental approach focused on maintaining oral hygiene and alleviating contact-related pain. The patient's overall health improved with inpatient care and the periodontal tissues deteriorated. CONCLUSIONS: Collaborative efforts between medical and dental professionals are paramount in comprehensively evaluating and treating patients with intricate complications from rare diseases. Furthermore, the PLG c.1468C > T (p.Arg490*) stop-gain mutation could contribute to the association between plasminogen deficiency and related conditions.
Asunto(s)
Síndrome de Behçet , Periodontitis , Femenino , Humanos , Fibrinolisina , Síndrome de Behçet/complicaciones , Síndrome de Behçet/genética , Enfermedades Raras/complicaciones , Periodontitis/complicaciones , Periodontitis/genética , Plasminógeno/genética , FibrinaRESUMEN
Dental anterior fractures are common injuries, especially in those who practice extreme sports. This report describes a 25-year-old Bolivian patient who attended our private dental clinic in La Paz, Bolivia after experiencing an accident during downhill mountain biking. An intraoral examination revealed a fracture line on the buccal side in the middle third of the coronal portion of the right central maxillary incisor which extended towards the proximal and lingual sides. Multidisciplinary treatment, including crown lengthening, osteotomy, root canal treatment, fiberglass post insertion, and reattachment of the fracture segment was performed. A follow-up examination at 10 months later revealed that the tooth was completely reestablished both functionally and esthetically and that there was no periapical pathosis or discomfort. This outcome suggests that if a patient seeks a dental consultation soon after a complex crown-root fracture has occurred, and if the broken tooth segment is available, then reattachment offers an economical and simple treatment option which will allow immediate restoration of functionality and esthetic standards. Continued follow-up should form part of such a treatment plan to allow long-term pulp vitality and periodontal health status to be monitored.
Asunto(s)
Recubrimiento Dental Adhesivo , Fracturas de los Dientes , Humanos , Adulto , Raíz del Diente/lesiones , Incisivo , Estética Dental , Fracturas de los Dientes/terapia , Tratamiento del Conducto Radicular , Corona del Diente , Restauración Dental PermanenteRESUMEN
Liver development involves dramatic gene expression changes mediated by transcriptional and post-transcriptional control. Here, we show that the Cnot deadenylase complex plays a crucial role in liver functional maturation. The Cnot3 gene encodes an essential subunit of the Cnot complex. Mice lacking Cnot3 in liver have reduced body and liver masses, and they display anemia and severe liver damage. Histological analyses indicate that Cnot3-deficient (Cnot3-/- ) hepatocytes are irregular in size and morphology, resulting in formation of abnormal sinusoids. We observe hepatocyte death, increased abundance of mitotic and mononucleate hepatocytes, and inflammation. Cnot3-/- livers show increased expression of immune response-related, cell cycle-regulating and immature liver genes, while many genes relevant to liver functions, such as oxidation-reduction, lipid metabolism and mitochondrial function, decrease, indicating impaired liver functional maturation. Highly expressed mRNAs possess elongated poly(A) tails and are stabilized in Cnot3-/- livers, concomitant with an increase of the proteins they encode. In contrast, transcription of liver function-related mRNAs was lower in Cnot3-/- livers. We detect efficient suppression of Cnot3 protein postnatally, demonstrating the crucial contribution of mRNA decay to postnatal liver functional maturation.
Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Hígado/crecimiento & desarrollo , Factores de Transcripción/metabolismo , Albúminas/metabolismo , Anemia/metabolismo , Animales , Animales Recién Nacidos , Apoptosis , Conductos Biliares/metabolismo , Ciclo Celular , Femenino , Perfilación de la Expresión Génica , Hepatocitos/citología , Hepatocitos/metabolismo , Inflamación , Lípidos/química , Hígado/embriología , Hígado/metabolismo , Masculino , Ratones , Ratones Noqueados , Regiones Promotoras Genéticas , ARN Mensajero/metabolismo , Factores de Tiempo , Factores de Transcripción/genéticaRESUMEN
Circadian clocks are an endogenous internal timekeeping mechanism that drives the rhythmic expression of genes, controlling the 24 h oscillatory pattern in behaviour and physiology. It has been recently shown that post-transcriptional mechanisms are essential for controlling rhythmic gene expression. Controlling the stability of mRNA through poly(A) tail length modulation is one such mechanism. In this study, we show that Cnot1, encoding the scaffold protein of the CCR4-NOT deadenylase complex, is highly expressed in the suprachiasmatic nucleus, the master timekeeper. CNOT1 deficiency in mice results in circadian period lengthening and alterations in the mRNA and protein expression patterns of various clock genes, mainly Per2. Per2 mRNA exhibited a longer poly(A) tail and increased mRNA stability in Cnot1+/- mice. CNOT1 is recruited to Per2 mRNA through BRF1 (ZFP36L1), which itself oscillates in antiphase with Per2 mRNA. Upon Brf1 knockdown, Per2 mRNA is stabilized leading to increased PER2 expression levels. This suggests that CNOT1 plays a role in tuning and regulating the mammalian circadian clock.
Asunto(s)
Ritmo Circadiano , Proteínas Circadianas Period , Animales , Ratones , Ritmo Circadiano/genética , Mamíferos/genética , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Estabilidad del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Núcleo Supraquiasmático/metabolismoRESUMEN
CCR4-NOT complex-mediated mRNA deadenylation serves critical functions in multiple biological processes, yet how this activity is regulated is not fully understood. Here, we show that osmotic stress induces MAPKAPK-2 (MK2)-mediated phosphorylation of CNOT2. Programmed cell death is greatly enhanced by osmotic stress in CNOT2-depleted cells, indicating that CNOT2 is responsible for stress resistance of cells. Although wild-type (WT) and non-phosphorylatable CNOT2 mutants reverse this sensitivity, a phosphomimetic form of CNOT2, in which serine at the phosphorylation site is replaced with glutamate, does not have this function. We also show that mRNAs have elongated poly(A) tails in CNOT2-depleted cells and that introduction of CNOT2 WT or a non-phosphorylatable mutant, but not phosphomimetic CNOT2, renders their poly(A) tail lengths comparable to those in control HeLa cells. Consistent with this, the CCR4-NOT complex containing phosphomimetic CNOT2 exhibits less deadenylase activity than that containing CNOT2 WT. These data suggest that CCR4-NOT complex deadenylase activity is regulated by post-translational modification, yielding dynamic control of mRNA deadenylation.
Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Complejos Multiproteicos/metabolismo , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores CCR4/metabolismo , Proteínas Represoras/metabolismo , Línea Celular , Activación Enzimática , Humanos , Presión Osmótica , Fosforilación , Estabilidad del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Estrés Fisiológico/genéticaRESUMEN
BACKGROUND: Periodontal disease is the most common dental disease in dogs. Although the systemic effects of periodontal disease have not been clarified in veterinary science, it is necessary to evaluate the effects of periodontal disease in clinical trials in the future. There have been a few clinical attempts made, however, to assess the severity of periodontal inflammation and its impact on the systemic health of dogs. Meanwhile, in the field of dentistry for humans, the periodontal inflamed surface area (PISA) and periodontal epithelial surface area (PESA) have been used to quantitatively assess the degree of periodontal disease affecting a single tooth as well as the overall extent of periodontitis. Recent studies have also suggested the use of these assessments to examine the relationship between periodontal inflammation and systemic health. RESULTS: The estimation formula for a dog's periodontal pocket surface area (PPSA), an alternative to PISA and PESA in humans, was established using body weight and periodontal pocket depth. Actual values were measured using extracted teeth from various dog breeds and sizes (2.3-25.0 kg of body weight) to obtain universal regression equations for PPSA. Altogether, 625 teeth from 73 dogs of 16 breeds were extracted and subsequently analyzed for morphological information. PPSA was measured in 61 dogs of 10 breeds with periodontal disease using the established estimation formulas, and the correlation between PPSA and preoperative blood chemistry data was analyzed accordingly. A strong correlation was found between PPSA and serum globulin (r = 0.71) while moderate correlations were found for C-reactive protein (r = 0.54) and serum albumin (r = -0.51). CONCLUSIONS: Estimation formulas using body weight and the 6-point probing depth were established for determining PPSA. Direct correlations between PPSA and several blood test results were observed in the study sample. Taken together, these results suggest that PPSA could be useful for evaluating the effects of periodontitis on systemic conditions in dogs.
Asunto(s)
Enfermedades de los Perros , Enfermedades Periodontales , Bolsa Periodontal , Periodontitis , Animales , Peso Corporal , Perros , Enfermedades Periodontales/veterinaria , Bolsa Periodontal/veterinaria , Periodontitis/veterinariaRESUMEN
Whole-body metabolic homeostasis is tightly controlled by hormone-like factors with systemic or paracrine effects that are derived from nonendocrine organs, including adipose tissue (adipokines) and liver (hepatokines). Fibroblast growth factor 21 (FGF21) is a hormone-like protein, which is emerging as a major regulator of whole-body metabolism and has therapeutic potential for treating metabolic syndrome. However, the mechanisms that control FGF21 levels are not fully understood. Herein, we demonstrate that FGF21 production in the liver is regulated via a posttranscriptional network consisting of the CCR4-NOT deadenylase complex and RNA-binding protein tristetraprolin (TTP). In response to nutrient uptake, CCR4-NOT cooperates with TTP to degrade AU-rich mRNAs that encode pivotal metabolic regulators, including FGF21. Disruption of CCR4-NOT activity in the liver, by deletion of the catalytic subunit CNOT6L, increases serum FGF21 levels, which ameliorates diet-induced metabolic disorders and enhances energy expenditure without disrupting bone homeostasis. Taken together, our study describes a hepatic CCR4-NOT/FGF21 axis as a hitherto unrecognized systemic regulator of metabolism and suggests that hepatic CCR4-NOT may serve as a target for devising therapeutic strategies in metabolic syndrome and related morbidities.
Asunto(s)
Exorribonucleasas , Factores de Crecimiento de Fibroblastos , Hepatocitos , Homeostasis , Ribonucleasas , Animales , Células Cultivadas , Dieta Alta en Grasa , Exorribonucleasas/genética , Exorribonucleasas/metabolismo , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Hepatocitos/metabolismo , Hepatocitos/fisiología , Homeostasis/genética , Homeostasis/fisiología , Humanos , Hígado/química , Hígado/metabolismo , Hígado/patología , Síndrome Metabólico/metabolismo , Ratones , Ratones Transgénicos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribonucleasas/genética , Ribonucleasas/metabolismoRESUMEN
The failure of endodontic treatment is directly associated with microbial infection in the root canal or periapical areas. An endodontic sealer that is both bactericidal and biocompatible is essential for the success of root canal treatments. This is one of the vital issues yet to be solved in clinical dental practice. This in vitro study assessed the effectiveness of graphene oxide (GO) composites GO-CaF2 and GO-Ag-CaF2 as endodontic sealer materials. Dentin slices were coated with either the GO-based composites or commonly used root canal sealers (non-eugenol zinc oxide sealer). The coated slices were treated in 0.9% NaCl, phosphate-buffered saline (PBS), and simulated body fluid (SBF) at 37ËC for 24 hours to compare their sealing effect on the dentin surface. In addition, the radiopacity of these composites was examined to assess whether they complied with the requirements of a sealer for good radiographic visualization. Scanning electron microscopy showed the significant sealing capability of the composites as coating materials. Radiographic images confirmed their radiopacity. Mineral deposition indicated their bioactivity, especially of GO-Ag-CaF2, and thus it is potential for regenerative application. They were both previously shown to be bactericidal to oral microbes and cytocompatible with host cells. With such a unique assemblage of critical properties, these GO-based composites show promise as endodontic sealers for protection against reinfection in root canal treatment and enhanced success in endodontic treatment overall.
Asunto(s)
Grafito , Materiales de Obturación del Conducto Radicular , Humanos , Materiales de Obturación del Conducto Radicular/farmacología , Grafito/farmacología , Antibacterianos , Proyectos de Investigación , Ensayo de MaterialesRESUMEN
Accumulating evidence suggests that brown adipose tissue (BAT) is a potential therapeutic target for managing obesity and related diseases. PGAM family member 5, mitochondrial serine/threonine protein phosphatase (PGAM5), is a protein phosphatase that resides in the mitochondria and regulates many biological processes, including cell death, mitophagy, and immune responses. Because BAT is a mitochondria-rich tissue, we have hypothesized that PGAM5 has a physiological function in BAT. We previously reported that PGAM5-knockout (KO) mice are resistant to severe metabolic stress. Importantly, lipid accumulation is suppressed in PGAM5-KO BAT, even under unstressed conditions, raising the possibility that PGAM5 deficiency stimulates lipid consumption. However, the mechanism underlying this observation is undetermined. Here, using an array of biochemical approaches, including quantitative RT-PCR, immunoblotting, and oxygen consumption assays, we show that PGAM5 negatively regulates energy expenditure in brown adipocytes. We found that PGAM5-KO brown adipocytes have an enhanced oxygen consumption rate and increased expression of uncoupling protein 1 (UCP1), a protein that increases energy consumption in the mitochondria. Mechanistically, we found that PGAM5 phosphatase activity and intramembrane cleavage are required for suppression of UCP1 activity. Furthermore, utilizing a genome-wide siRNA screen in HeLa cells to search for regulators of PGAM5 cleavage, we identified a set of candidate genes, including phosphatidylserine decarboxylase (PISD), which catalyzes the formation of phosphatidylethanolamine at the mitochondrial membrane. Taken together, these results indicate that PGAM5 suppresses mitochondrial energy expenditure by down-regulating UCP1 expression in brown adipocytes and that its phosphatase activity and intramembrane cleavage are required for UCP1 suppression.
Asunto(s)
Adipocitos Marrones/metabolismo , Regulación hacia Abajo , Metabolismo Energético , Proteínas Mitocondriales/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Proteína Desacopladora 1/genética , Animales , Células Cultivadas , Células HeLa , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Mitocondriales/genética , Consumo de Oxígeno , Fosfoproteínas Fosfatasas/genética , Proteína Desacopladora 1/metabolismoRESUMEN
This case report highlights the importance of using a dental operating microscope (DOM) and ultrasonic endodontic tips (UETs) to locate all root canals in the lower first premolar. A 53-year-old woman presented to our clinic with pain in the lower right first premolar. After a detailed search using a DOM and UETs, three root canals were found, prepared with rotary HyFlex endodontic files, and obturated using the lateral condensation technique. At the five-year follow-up after treatment, the tooth was completely restored and fulfilling its function, with no signs or symptoms of any post-treatment flare-up.