Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Mol Cell ; 83(12): 2045-2058.e9, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37192628

RESUMEN

Mitophagy plays an important role in mitochondrial homeostasis by selective degradation of mitochondria. During mitophagy, mitochondria should be fragmented to allow engulfment within autophagosomes, whose capacity is exceeded by the typical mitochondria mass. However, the known mitochondrial fission factors, dynamin-related proteins Dnm1 in yeasts and DNM1L/Drp1 in mammals, are dispensable for mitophagy. Here, we identify Atg44 as a mitochondrial fission factor that is essential for mitophagy in yeasts, and we therefore term Atg44 and its orthologous proteins mitofissin. In mitofissin-deficient cells, a part of the mitochondria is recognized by the mitophagy machinery as cargo but cannot be enwrapped by the autophagosome precursor, the phagophore, due to a lack of mitochondrial fission. Furthermore, we show that mitofissin directly binds to lipid membranes and brings about lipid membrane fragility to facilitate membrane fission. Taken together, we propose that mitofissin acts directly on lipid membranes to drive mitochondrial fission required for mitophagy.


Asunto(s)
Autofagia , Mitofagia , Animales , Dinámicas Mitocondriales , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Dinaminas/genética , Dinaminas/metabolismo , Lípidos , Mamíferos/metabolismo
2.
Development ; 148(16)2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34355730

RESUMEN

Male germline development involves choreographed changes to mitochondrial number, morphology and organization. Mitochondrial reorganization during spermatogenesis was recently shown to require mitochondrial fusion and fission. Mitophagy, the autophagic degradation of mitochondria, is another mechanism for controlling mitochondrial number and physiology, but its role during spermatogenesis is largely unknown. During post-meiotic spermatid development, restructuring of the mitochondrial network results in packing of mitochondria into a tight array in the sperm midpiece to fuel motility. Here, we show that disruption of mouse Fis1 in the male germline results in early spermatid arrest that is associated with increased mitochondrial content. Mutant spermatids coalesce into multinucleated giant cells that accumulate mitochondria of aberrant ultrastructure and numerous mitophagic and autophagic intermediates, suggesting a defect in mitophagy. We conclude that Fis1 regulates mitochondrial morphology and turnover to promote spermatid maturation.


Asunto(s)
Mitocondrias/metabolismo , Dinámicas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Mitofagia/genética , Espermátides/metabolismo , Espermatogénesis/genética , Animales , Técnicas de Inactivación de Genes , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Mitocondriales/genética
3.
Diabetologia ; 66(1): 147-162, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36181536

RESUMEN

AIMS/HYPOTHESIS: Mitophagy, the selective autophagy of mitochondria, is essential for maintenance of mitochondrial function. Recent studies suggested that defective mitophagy in beta cells caused diabetes. However, because of technical difficulties, the development of a convenient and reliable method to evaluate mitophagy in beta cells in vivo is needed. The aim of this study was to establish beta cell-specific mitophagy reporter mice and elucidate the role of mitophagy in beta cell function under metabolically stressed conditions induced by a high-fat diet (HFD). METHODS: Mitophagy was assessed using newly generated conditional mitochondrial matrix targeting mitophagy reporter (CMMR) mice, in which mitophagy can be visualised specifically in beta cells in vivo using a fluorescent probe sensitive to lysosomal pH and degradation. Metabolic stress was induced in mice by exposure to the HFD for 20 weeks. The accumulation of dysfunctional mitochondria was examined by staining for functional/total mitochondria and reactive oxygen species (ROS) using specific fluorescent dyes and antibodies. To investigate the molecular mechanism underlying mitophagy in beta cells, overexpression and knockdown experiments were performed. HFD-fed mice were examined to determine whether chronic insulin treatment for 6 weeks could ameliorate mitophagy, mitochondrial function and impaired insulin secretion. RESULTS: Exposure to the HFD increased the number of enlarged (HFD-G) islets with markedly elevated mitophagy. Mechanistically, HFD feeding induced severe hypoxia in HFD-G islets, which upregulated mitophagy through the hypoxia-inducible factor 1-ɑ (Hif-1ɑ)/BCL2 interacting protein 3 (BNIP3) axis in beta cells. However, HFD-G islets unexpectedly showed the accumulation of dysfunctional mitochondria due to excessive ROS production, suggesting an insufficient capacity of mitophagy for the degradation of dysfunctional mitochondria. Chronic administration of insulin ameliorated hypoxia and reduced ROS production and dysfunctional mitochondria, leading to decreased mitophagy and restored insulin secretion. CONCLUSIONS/INTERPRETATION: We demonstrated that CMMR mice enabled the evaluation of mitophagy in beta cells. Our results suggested that metabolic stress induced by the HFD caused the aberrant accumulation of dysfunctional mitochondria, which overwhelmed the mitophagic capacity and was associated with defective maintenance of mitochondrial function and impaired insulin secretion.


Asunto(s)
Mitocondrias , Estrés Fisiológico , Ratones , Animales , Insulina , Hipoxia
4.
EMBO Rep ; 22(3): e49097, 2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33565245

RESUMEN

Parkin promotes cell survival by removing damaged mitochondria via mitophagy. However, although some studies have suggested that Parkin induces cell death, the regulatory mechanism underlying the dual role of Parkin remains unknown. Herein, we report that mitochondrial ubiquitin ligase (MITOL/MARCH5) regulates Parkin-mediated cell death through the FKBP38-dependent dynamic translocation from the mitochondria to the ER during mitophagy. Mechanistically, MITOL mediates ubiquitination of Parkin at lysine 220 residue, which promotes its proteasomal degradation, and thereby fine-tunes mitophagy by controlling the quantity of Parkin. Deletion of MITOL leads to accumulation of the phosphorylated active form of Parkin in the ER, resulting in FKBP38 degradation and enhanced cell death. Thus, we have shown that MITOL blocks Parkin-induced cell death, at least partially, by protecting FKBP38 from Parkin. Our findings unveil the regulation of the dual function of Parkin and provide a novel perspective on the pathogenesis of PD.


Asunto(s)
Mitofagia , Ubiquitina-Proteína Ligasas , Supervivencia Celular , Células HeLa , Humanos , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
5.
J Cell Physiol ; 236(11): 7612-7624, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33934360

RESUMEN

Muscle disuse induces atrophy through increased reactive oxygen species (ROS) released from damaged mitochondria. Mitophagy, the autophagic degradation of mitochondria, is associated with increased ROS production. However, the mitophagy activity status during disuse-induced muscle atrophy has been a subject of debate. Here, we developed a new mitophagy reporter mouse line to examine how disuse affected mitophagy activity in skeletal muscles. Mice expressing tandem mCherry-EGFP proteins on mitochondria were then used to monitor the dynamics of mitophagy activity. The reporter mice demonstrated enhanced mitophagy activity and increased ROS production in atrophic soleus muscles following a 14-day hindlimb immobilization. Results also showed an increased expression of multiple mitophagy genes, including Bnip3, Bnip3l, and Park2. Our findings thus conclude that disuse enhances mitophagy activity and ROS production in atrophic skeletal muscles and suggests that mitophagy is a potential therapeutic target for disuse-induced muscle atrophy.


Asunto(s)
Mitocondrias Musculares/metabolismo , Mitofagia , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Modelos Animales de Enfermedad , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Suspensión Trasera , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias Cardíacas/genética , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/patología , Mitocondrias Musculares/genética , Mitocondrias Musculares/patología , Músculo Esquelético/patología , Atrofia Muscular/genética , Atrofia Muscular/patología , Miocardio/metabolismo , Miocardio/patología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Inanición , Factores de Tiempo , Proteína Fluorescente Roja
6.
FASEB J ; 34(2): 2944-2957, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31908024

RESUMEN

Mitochondrial quality control maintains mitochondrial function by regulating mitochondrial dynamics and mitophagy. Despite the identification of mitochondrial quality control factors, little is known about the crucial regulators coordinating both mitochondrial fission and mitophagy. Through a cell-based functional screening assay, FK506 binding protein 8 (FKBP8) was identified to target microtubule-associated protein 1 light chain 3 (LC3) to the mitochondria and to change mitochondrial morphology. Microscopy analysis revealed that the formation of tubular and enlarged mitochondria was observed in FKBP8 knockdown HeLa cells and the cortex of Fkbp8 heterozygote-knockout mouse embryos. Under iron depletion-induced stress, FKBP8 was recruited to the site of mitochondrial division through budding and colocalized with LC3. FKBP8 was also found to be required for mitochondrial fragmentation and mitophagy under hypoxic stress. Conversely, FKBP8 overexpression induced mitochondrial fragmentation in HeLa cells, human fibroblasts and mouse embryo fibroblasts (MEFs), and this fragmentation occurred in Drp1 knockout MEF cells, FIP200 knockout HeLa cells and BNIP3/NIX double knockout HeLa cells, but not in Opa1 knockout MEFs. Interestingly, we found an LIR motif-like sequence (LIRL), as well as an LIR motif, at the N-terminus of FKBP8 and LIRL was essential for both inducing mitochondrial fragmentation and binding of FKBP8 to OPA1. Together, we suggest that FKBP8 plays an essential role in mitochondrial fragmentation through LIRL during mitophagy and this activity of FKBP8 together with LIR is required for mitophagy under stress conditions.


Asunto(s)
Fibroblastos/metabolismo , Mitocondrias/metabolismo , Dinámicas Mitocondriales , Estrés Fisiológico , Proteínas de Unión a Tacrolimus/metabolismo , Animales , Células HEK293 , Células HeLa , Humanos , Ratones , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias/genética , Proteínas de Unión a Tacrolimus/genética
7.
J Biol Chem ; 291(31): 16162-74, 2016 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-27302064

RESUMEN

Phosphatase and tensin homolog-induced putative kinase 1 (PINK1), a Ser/Thr kinase, and PARKIN, a ubiquitin ligase, are causal genes for autosomal recessive early-onset parkinsonism. Multiple lines of evidence indicate that PINK1 and PARKIN cooperatively control the quality of the mitochondrial population via selective degradation of damaged mitochondria by autophagy. Here, we report that PINK1 and PARKIN induce cell death with a 12-h delay after mitochondrial depolarization, which differs from the time profile of selective autophagy of mitochondria. This type of cell death exhibited definite morphologic features such as plasma membrane rupture, was insensitive to a pan-caspase inhibitor, and did not involve mitochondrial permeability transition. Expression of a constitutively active form of PINK1 caused cell death in the presence of a pan-caspase inhibitor, irrespective of the mitochondrial membrane potential. PINK1-mediated cell death depended on the activities of PARKIN and proteasomes, but it was not affected by disruption of the genes required for autophagy. Furthermore, fluorescence and electron microscopic analyses revealed that mitochondria were still retained in the dead cells, indicating that PINK1-mediated cell death is not caused by mitochondrial loss. Our findings suggest that PINK1 and PARKIN play critical roles in selective cell death in which damaged mitochondria are retained, independent of mitochondrial autophagy.


Asunto(s)
Mitocondrias/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Quinasas/metabolismo , Muerte Celular , Células HEK293 , Células HeLa , Humanos , Potencial de la Membrana Mitocondrial , Mitocondrias/genética , Complejo de la Endopetidasa Proteasomal/genética , Proteínas Quinasas/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
8.
Biochim Biophys Acta ; 1863(5): 984-91, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26434997

RESUMEN

Peroxisome number and quality are maintained by its biogenesis and turnover and are important for the homeostasis of peroxisomes. Peroxisomes are increased in number by division with dynamic morphological changes including elongation, constriction, and fission. In the course of peroxisomal division, peroxisomal morphogenesis is orchestrated by Pex11ß, dynamin-like protein 1 (DLP1), and mitochondrial fission factor (Mff). Conversely, peroxisome number is reduced by its degradation. Peroxisomes are mainly degraded by pexophagy, a type of autophagy specific for peroxisomes. Upon pexophagy, an adaptor protein translocates on peroxisomal membrane and connects peroxisomes to autophagic machineries. Molecular mechanisms of pexophagy are well studied in yeast systems where several specific adaptor proteins are identified. Pexophagy in mammals also proceeds in a manner dependent on adaptor proteins. In this review, we address the recent progress in studies on peroxisome morphogenesis and pexophagy.


Asunto(s)
Retículo Endoplásmico/metabolismo , GTP Fosfohidrolasas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Mitocondriales/metabolismo , Peroxisomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo , Animales , Dinaminas , Retículo Endoplásmico/química , Células Eucariotas/química , Células Eucariotas/metabolismo , GTP Fosfohidrolasas/química , GTP Fosfohidrolasas/genética , Regulación de la Expresión Génica , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/genética , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Peroxinas , Peroxisomas/química , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estructura Terciaria de Proteína , Proteolisis , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal , Especificidad de la Especie , Ubiquitina/genética , Levaduras/química , Levaduras/metabolismo
9.
Biochim Biophys Acta ; 1853(10 Pt B): 2756-65, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25603537

RESUMEN

Mitochondria autophagy (mitophagy) is a process that selectively degrades mitochondria via autophagy. Recently, there has been significant progress in the understanding of mitophagy in yeast. Atg32, a mitochondrial outer membrane receptor, is indispensable for mitophagy. Phosphorylation of Atg32 is an initial cue for selective mitochondrial degradation. Atg32 expression and phosphorylation regulate the induction and efficiency of mitophagy. In addition to Atg32-related processes, recent studies have revealed that mitochondrial fission and the mitochondria-endoplasmic reticulum (ER) contact site may play important roles in mitophagy. Mitochondrial fission is required to regulate mitochondrial size. Mitochondria-ER contact is mediated by the ER-mitochondria encounter structure and is important to supply lipids from the ER for autophagosome biogenesis for mitophagy. Mitophagy is physiologically important for regulating the number of mitochondria, diminishing mitochondrial production of reactive oxygen species, and extending chronological lifespan under caloric restriction. These findings suggest that mitophagy contributes to maintain mitochondrial homeostasis. However, whether mitophagy selectively degrades damaged or dysfunctional mitochondria in yeast is unknown.


Asunto(s)
Mitocondrias , Dinámicas Mitocondriales/fisiología , Mitofagia/fisiología , Receptores Citoplasmáticos y Nucleares , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas Relacionadas con la Autofagia , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
Genes Cells ; 20(1): 36-49, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25358256

RESUMEN

Pexophagy can be experimentally induced in mammalian cells by removing the culture serum. Pex14p, a peroxisomal membrane protein essential for matrix protein import in docking of soluble receptor Pex5p, is involved in the mammalian autophagic degradation of peroxisomes and interacts with the lipidated form of LC3, termed LC3-II, an essential factor for autophagosome formation, under the starvation condition in CHO-K1 cells. However, molecular mechanisms underlying the Pex14p-LC3-II interaction remain largely unknown. To verify whether Pex14p directly binds LC3-II, we reconstituted an in vitro conjugation system for synthesis of LC3-II. We show here that Pex14p directly interacts with LC3-II via the transmembrane domain of Pex14p. Pex5p competitively inhibited this interaction, implying that Pex14p preferentially binds to Pex5p under the nutrient-rich condition. Moreover, a Pex5p mutant defective in PTS1-protein import lost its affinity for Pex14p under the condition of nutrient deprivation, thereby more likely explaining why Pex14p prefers to interact with LC3-II under the starvation condition in vivo. Together, these results suggest that Pex14p is a unique factor that functions in the dual processes in peroxisomal biogenesis and degradation with the coordination of Pex5p in response to the environmental changes.


Asunto(s)
Autofagia , Proteínas de la Membrana/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Peroxisomas/metabolismo , Animales , Células CHO , Cricetulus , Proteínas de la Membrana/genética , Mutación , Unión Proteica
11.
Autophagy ; : 1-9, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38818923

RESUMEN

Mitochondria undergo fission and fusion, and their coordinated balance is crucial for maintaining mitochondrial homeostasis. In yeast, the dynamin-related protein Dnm1 is a mitochondrial fission factor acting from outside the mitochondria. We recently reported the mitochondrial intermembrane space protein Atg44/mitofissin/Mdi1/Mco8 as a novel fission factor, but the relationship between Atg44 and Dnm1 remains elusive. Here, we show that Atg44 is required to complete Dnm1-mediated mitochondrial fission under homeostatic conditions. Atg44-deficient cells often exhibit enlarged mitochondria with accumulated Dnm1 and rosary-like mitochondria with Dnm1 foci at constriction sites. These mitochondrial constriction sites retain the continuity of both the outer and inner membranes within an extremely confined space, indicating that Dnm1 is unable to complete mitochondrial fission without Atg44. Moreover, accumulated Atg44 proteins are observed at mitochondrial constriction sites. These findings suggest that Atg44 and Dnm1 cooperatively execute mitochondrial fission from inside and outside the mitochondria, respectively.Abbreviation: ATG: autophagy related; CLEM: correlative light and electron microscopy; EM: electron microscopy; ER: endoplasmic reticulum; ERMES: endoplasmic reticulum-mitochondria encounter structure; GA: glutaraldehyde; GFP: green fluorescent protein; GTP: guanosine triphosphate: IMM: inner mitochondrial membrane; IMS: intermembrane space; OMM: outer mitochondrial membrane; PB: phosphate buffer; PBS: phosphate-buffered saline; PFA: paraformaldehyde; RFP: red fluorescent protein; WT: wild type.

12.
Sci Rep ; 14(1): 6178, 2024 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-38485716

RESUMEN

Mitochondrial dysfunction in pancreatic ß-cells leads to impaired glucose-stimulated insulin secretion (GSIS) and type 2 diabetes (T2D), highlighting the importance of autophagic elimination of dysfunctional mitochondria (mitophagy) in mitochondrial quality control (mQC). Imeglimin, a new oral anti-diabetic drug that improves hyperglycemia and GSIS, may enhance mitochondrial activity. However, chronic imeglimin treatment's effects on mQC in diabetic ß-cells are unknown. Here, we compared imeglimin, structurally similar anti-diabetic drug metformin, and insulin for their effects on clearance of dysfunctional mitochondria through mitophagy in pancreatic ß-cells from diabetic model db/db mice and mitophagy reporter (CMMR) mice. Pancreatic islets from db/db mice showed aberrant accumulation of dysfunctional mitochondria and excessive production of reactive oxygen species (ROS) along with markedly elevated mitophagy, suggesting that the generation of dysfunctional mitochondria overwhelmed the mitophagic capacity in db/db ß-cells. Treatment with imeglimin or insulin, but not metformin, reduced ROS production and the numbers of dysfunctional mitochondria, and normalized mitophagic activity in db/db ß-cells. Concomitantly, imeglimin and insulin, but not metformin, restored the secreted insulin level and reduced ß-cell apoptosis in db/db mice. In conclusion, imeglimin mitigated accumulation of dysfunctional mitochondria through mitophagy in diabetic mice, and may contribute to preserving ß-cell function and effective glycemic control in T2D.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Triazinas , Ratones , Animales , Secreción de Insulina , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ratones Endogámicos C57BL , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Glucosa/metabolismo , Ratones Endogámicos , Mitocondrias/metabolismo , Apoptosis
13.
J Biochem ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38843068

RESUMEN

Most autophagy-related genes, or ATG genes, have been identified in studies using budding yeast. Although the functions of the ATG genes are well understood, the contributions of individual genes to non-selective and various types of selective autophagy remain to be fully elucidated. In this study, we quantified the activity of non-selective autophagy, the cytoplasm-to-vacuole targeting (Cvt) pathway, mitophagy, endoplasmic reticulum (ER)-phagy, and pexophagy in all Saccharomyces cerevisiae atg mutants. Among the mutants of the core autophagy genes considered essential for autophagy, the atg13 mutant and mutants of the genes involved in the two ubiquitin-like conjugation systems retained residual autophagic functionality. In particular, mutants of the Atg8 ubiquitin-like conjugation system (the Atg8 system) exhibited substantial levels of non-selective autophagy, the Cvt pathway, and pexophagy, although mitophagy and ER-phagy were undetectable. Atg8-system mutants also displayed intravacuolar vesicles resembling autophagic bodies, albeit at significantly reduced size and frequency. Thus, our data suggest that membranous sequestration and vacuolar delivery of autophagic cargo can occur in the absence of the Atg8 system. Alongside these findings, the comprehensive analysis conducted here provides valuable datasets for future autophagy research.

14.
Cell Death Differ ; 31(5): 651-661, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38519771

RESUMEN

Mitophagy plays an important role in the maintenance of mitochondrial homeostasis and can be categorized into two types: ubiquitin-mediated and receptor-mediated pathways. During receptor-mediated mitophagy, mitophagy receptors facilitate mitophagy by tethering the isolation membrane to mitochondria. Although at least five outer mitochondrial membrane proteins have been identified as mitophagy receptors, their individual contribution and interrelationship remain unclear. Here, we show that HeLa cells lacking BNIP3 and NIX, two of the five receptors, exhibit a complete loss of mitophagy in various conditions. Conversely, cells deficient in the other three receptors show normal mitophagy. Using BNIP3/NIX double knockout (DKO) cells as a model, we reveal that mitophagy deficiency elevates mitochondrial reactive oxygen species (mtROS), which leads to activation of the Nrf2 antioxidant pathway. Notably, BNIP3/NIX DKO cells are highly sensitive to ferroptosis when Nrf2-driven antioxidant enzymes are compromised. Moreover, the sensitivity of BNIP3/NIX DKO cells is fully rescued upon the introduction of wild-type BNIP3 and NIX, but not the mutant forms incapable of facilitating mitophagy. Consequently, our results demonstrate that BNIP3 and NIX-mediated mitophagy plays a role in regulating mtROS levels and protects cells from ferroptosis.


Asunto(s)
Ferroptosis , Proteínas de la Membrana , Mitocondrias , Proteínas Mitocondriales , Mitofagia , Factor 2 Relacionado con NF-E2 , Proteínas Proto-Oncogénicas , Especies Reactivas de Oxígeno , Humanos , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Especies Reactivas de Oxígeno/metabolismo , Células HeLa , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Proteínas Proto-Oncogénicas/metabolismo , Mitocondrias/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Regulación hacia Abajo , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética
15.
Autophagy ; 19(10): 2657-2667, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37191320

RESUMEN

The endoplasmic reticulum (ER) undergoes selective autophagy called reticulophagy or ER-phagy. Multiple reticulon- and receptor expression enhancing protein (REEP)-like ER-shaping proteins, including budding yeast Atg40, serve as reticulophagy receptors that stabilize the phagophore on the ER by interacting with phagophore-conjugated Atg8. Additionally, they facilitate phagophore engulfment of the ER by remodeling ER morphology. We reveal that Hva22, a REEP family protein in fission yeast, promotes reticulophagy without Atg8-binding capacity. The role of Hva22 in reticulophagy can be replaced by expressing Atg40 independently of its Atg8-binding ability. Conversely, adding an Atg8-binding sequence to Hva22 enables it to substitute for Atg40 in budding yeast. Thus, the phagophore-stabilizing and ER-shaping activities, both of which Atg40 solely contains, are divided between two separate factors, receptors and Hva22, respectively, in fission yeast.Abbreviations: AIM: Atg8-family interacting motif; Atg: autophagy related; DTT: dithiothreitol; ER: endoplasmic reticulum GFP: green fluorescent protein; NAA: 1-naphthaleneacetic acid; REEP: receptor expression enhancing protein; RFP: red fluorescent protein; UPR: unfolded protein response.


Asunto(s)
Autofagia , Schizosaccharomyces , Autofagosomas/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas Portadoras/metabolismo
16.
Nat Commun ; 14(1): 1817, 2023 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-37002207

RESUMEN

Human parechovirus (PeV-A) is an RNA virus that belongs to the family Picornaviridae and it is currently classified into 19 genotypes. PeV-As usually cause mild illness in children and adults. Among the genotypes, PeV-A3 can cause severe diseases in neonates and young infants, resulting in neurological sequelae and death. In this study, we identify the human myeloid-associated differentiation marker (MYADM) as an essential host factor for the entry of six PeV-As (PeV-A1 to PeV-A6), including PeV-A3. The infection of six PeV-As (PeV-A1 to PeV-A6) to human cells is abolished by knocking out the expression of MYADM. Hamster BHK-21 cells are resistant to PeV-A infection, but the expression of human MYADM in BHK-21 confers PeV-A infection and viral production. Furthermore, VP0 capsid protein of PeV-A3 interacts with one extracellular domain of human MYADM on the cell membrane of BHK-21. The identification of MYADM as an essential entry factor for PeV-As infection is expected to advance our understanding of the pathogenesis of PeV-As.


Asunto(s)
Parechovirus , Infecciones por Picornaviridae , Picornaviridae , Adulto , Niño , Humanos , Lactante , Recién Nacido , Genotipo , Parechovirus/genética , Infecciones por Picornaviridae/genética
17.
Cell Rep ; 42(5): 112454, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37160114

RESUMEN

PINK1 is activated by autophosphorylation and forms a high-molecular-weight complex, thereby initiating the selective removal of damaged mitochondria by autophagy. Other than translocase of the outer mitochondrial membrane complexes, members of PINK1-containing protein complexes remain obscure. By mass spectrometric analysis of PINK1 co-immunoprecipitates, we identify the inner membrane protein TIM23 as a component of the PINK1 complex. TIM23 downregulation decreases PINK1 levels and significantly delays autophosphorylation, indicating that TIM23 promotes PINK1 accumulation in response to depolarization. Moreover, inactivation of the mitochondrial protease OMA1 not only enhances PINK1 accumulation but also represses the reduction in PINK1 levels induced by TIM23 downregulation, suggesting that TIM23 facilitates PINK1 activation by safeguarding against degradation by OMA1. Indeed, deficiencies of pathogenic PINK1 mutants that fail to interact with TIM23 are partially restored by OMA1 inactivation. These findings indicate that TIM23 plays a distinct role in activating mitochondrial autophagy by protecting PINK1.


Asunto(s)
Mitocondrias , Membranas Mitocondriales , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Quinasas/metabolismo
18.
J Cell Biol ; 173(5): 709-17, 2006 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-16754956

RESUMEN

Phosphoinositides regulate a wide range of cellular activities, including membrane trafficking and biogenesis, via interaction with various effector proteins that contain phosphoinositide binding motifs. We show that in the yeast Pichia pastoris, phosphatidylinositol 4'-monophosphate (PI4P) initiates de novo membrane synthesis that is required for peroxisome degradation by selective autophagy and that this PI4P signaling is modulated by an ergosterol-converting PpAtg26 (autophagy-related) protein harboring a novel PI4P binding GRAM (glucosyltransferase, Rab-like GTPase activators, and myotubularins) domain. A phosphatidylinositol-4-OH kinase, PpPik1, is the primary source of PI4P. PI4P concentrated in a protein-lipid nucleation complex recruits PpAtg26 through an interaction with the GRAM domain. Sterol conversion by PpAtg26 at the nucleation complex is necessary for elongation and maturation of the membrane structure. This study reveals the role of the PI4P-signaling pathway in selective autophagy, a process comprising multistep molecular events that lead to the de novo membrane formation.


Asunto(s)
Autofagia/fisiología , Membranas Intracelulares/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Transducción de Señal/fisiología , 1-Fosfatidilinositol 4-Quinasa/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Glucosiltransferasas/metabolismo , Datos de Secuencia Molecular , Pichia/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas Tirosina Fosfatasas no Receptoras
19.
iScience ; 24(7): 102733, 2021 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-34258561

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a degenerative motor neuron disease characterized by the formation of cytoplasmic ubiquitinated TDP-43 protein aggregates in motor neurons. Stress granules (SGs) are stress-induced cytoplasmic protein aggregates containing various neuropathogenic proteins, including TDP-43. Several studies have suggested that SGs are the initial site of the formation of pathogenic ubiquitinated TDP-43 aggregates in ALS neurons. Mutations in the optineurin (OPTN) and TIA1 genes are causative factors of familial ALS with TDP-43 aggregation pathology. We found that both OPTN depletion and ALS-associated OPTN mutations upregulated the TIA1 level in cells recovered from heat shock, and this upregulated TIA1 increased the amount of ubiquitinated TDP-43. Ubiquitinated TDP-43 induced by OPTN depletion was localized in SGs. Our study suggests that ALS-associated loss-of-function mutants of OPTN increase the amount of ubiquitinated TDP-43 in neurons by increasing the expression of TIA1, thereby promoting the aggregation of ubiquitinated TDP-43.

20.
Genes Cells ; 14(7): 861-70, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19549169

RESUMEN

When microbes sense environmental changes, they often temporarily attenuate cell growth to adapt to the new situations, showing a lag phase. In this study, we report that the methylotrophic yeast, Pichia pastoris, induced autophagy during the lag phase after the cells were shifted from glucose to methanol medium. Through the autophagic process at least two proteins, aminopeptidase I precursor and cytosolic aldehyde dehydrogenase, were found to be transported into the vacuole, which was dependent on PpAtg11 and PpAtg17, respectively. Notably, PpAtg1 and PpAtg17 were required for early exit from the lag phase during the methanol adaptation. In accordance, phosphorylation states of elongation initiation factor 2alpha indicated reductions of intracellular amino-acid pools in the atg mutant strains. Together, these data demonstrate the importance of amino acid recycling by autophagy during a cell-remodeling process.


Asunto(s)
Autofagia/fisiología , Pichia/metabolismo , Aldehído Deshidrogenasa/metabolismo , Citosol/metabolismo , Proteínas Fúngicas/metabolismo , Glucosa/metabolismo , Metanol/metabolismo , Fosforilación , Pichia/genética , Vacuolas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA