Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 231
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(5)2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38473789

RESUMEN

In the adult mammalian brain, neurons are produced from neural stem cells (NSCs) residing in two niches-the subventricular zone (SVZ), which forms the lining of the lateral ventricles, and the subgranular zone in the hippocampus. Epigenetic mechanisms contribute to maintaining distinct cell fates by suppressing gene expression that is required for deciding alternate cell fates. Several histone deacetylase (HDAC) inhibitors can affect adult neurogenesis in vivo. However, data regarding the role of specific HDACs in cell fate decisions remain limited. Herein, we demonstrate that HDAC8 participates in the regulation of the proliferation and differentiation of NSCs/neural progenitor cells (NPCs) in the adult mouse SVZ. Specific knockout of Hdac8 in NSCs/NPCs inhibited proliferation and neural differentiation. Treatment with the selective HDAC8 inhibitor PCI-34051 reduced the neurosphere size in cultures from the SVZ of adult mice. Further transcriptional datasets revealed that HDAC8 inhibition in adult SVZ cells disturbs biological processes, transcription factor networks, and key regulatory pathways. HDAC8 inhibition in adult SVZ neurospheres upregulated the cytokine-mediated signaling and downregulated the cell cycle pathway. In conclusion, HDAC8 participates in the regulation of in vivo proliferation and differentiation of NSCs/NPCs in the adult SVZ, which provides insights into the underlying molecular mechanisms.


Asunto(s)
Células Madre Adultas , Células-Madre Neurales , Intervención Coronaria Percutánea , Animales , Ratones , Ventrículos Laterales , Inhibidores de Histona Desacetilasas , Proliferación Celular , Mamíferos
2.
Genet Med ; 25(7): 100861, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37087635

RESUMEN

PURPOSE: This study aimed to establish variants in CBX1, encoding heterochromatin protein 1ß (HP1ß), as a cause of a novel syndromic neurodevelopmental disorder. METHODS: Patients with CBX1 variants were identified, and clinician researchers were connected using GeneMatcher and physician referrals. Clinical histories were collected from each patient. To investigate the pathogenicity of identified variants, we performed in vitro cellular assays and neurobehavioral and cytological analyses of neuronal cells obtained from newly generated Cbx1 mutant mouse lines. RESULTS: In 3 unrelated individuals with developmental delay, hypotonia, and autistic features, we identified heterozygous de novo variants in CBX1. The identified variants were in the chromodomain, the functional domain of HP1ß, which mediates interactions with chromatin. Cbx1 chromodomain mutant mice displayed increased latency-to-peak response, suggesting the possibility of synaptic delay or myelination deficits. Cytological and chromatin immunoprecipitation experiments confirmed the reduction of mutant HP1ß binding to heterochromatin, whereas HP1ß interactome analysis demonstrated that the majority of HP1ß-interacting proteins remained unchanged between the wild-type and mutant HP1ß. CONCLUSION: These collective findings confirm the role of CBX1 in developmental disabilities through the disruption of HP1ß chromatin binding during neurocognitive development. Because HP1ß forms homodimers and heterodimers, mutant HP1ß likely sequesters wild-type HP1ß and other HP1 proteins, exerting dominant-negative effects.


Asunto(s)
Homólogo de la Proteína Chromobox 5 , Heterocromatina , Animales , Ratones , Cromatina/genética , Proteínas Cromosómicas no Histona/genética , Histonas/genética , Histonas/metabolismo
3.
Ann Neurol ; 91(4): 532-547, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35167145

RESUMEN

OBJECTIVE: Repulsive guidance molecule-a (RGMa) is a glycosylphosphatidylinositol-linked glycoprotein which has multiple functions including axon growth inhibition and immune regulation. However, its role in the pathophysiology of neuromyelitis optica (NMO) is poorly understood. Perivascular astrocytopathy, which is induced by the leakage of aquaporin-4 (AQP4)-specific IgG into the central nervous system parenchyma, is a key feature of NMO pathology. We investigated the RGMa involvement in the pathology of NMO astrocytopathy, and tested a therapeutic potential of humanized anti-RGMa monoclonal antibody (RGMa-mAb). METHODS: Using a clinically relevant NMO rat model, we evaluated the therapeutic effect of a RGMa-mAb by behavioral testing, immunohistochemistry, and gene expression assay. We further performed in vitro experiments to address the RGMa-signaling in macrophages. RESULTS: In both NMO rats and an NMO-autopsied sample, RGMa was expressed by the spared neurons and astrocytes, whereas its receptor neogenin was expressed by infiltrating macrophages. AQP4-IgG-induced astrocytopathy and clinical exacerbation in NMO rats were ameliorated by RGMa-mAb treatment. RGMa-mAb treatment significantly suppressed neutrophil infiltration, and decreased the expression of neutrophil chemoattractants. Interestingly, neogenin-expressing macrophages accumulated in the lesion expressed CXCL2, a strong neutrophil chemoattractant, and further analysis revealed that RGMa directly regulated CXCL2 expression in macrophages. Finally, we found that our NMO rats developed neuropathic pain, and RGMa-mAb treatment effectively ameliorated the severity of neuropathic pain. INTERPRETATION: RGMa signaling in infiltrated macrophages is a critical driver of neutrophil-related astrocytopathy in NMO lesions, and RGMa-mAb may provide an efficient therapeutic strategy for NMO-associated neuropathic pain and motor deficits in patients with NMO. ANN NEUROL 2022;91:532-547.


Asunto(s)
Neuralgia , Neuromielitis Óptica , Animales , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Monoclonales Humanizados , Acuaporina 4 , Proteínas Ligadas a GPI , Humanos , Inmunoglobulina G , Interleucina-8 , Macrófagos , Proteínas de la Membrana , Proteínas del Tejido Nervioso , Neuromielitis Óptica/tratamiento farmacológico , Neutrófilos , Ratas
4.
Cereb Cortex ; 32(3): 504-519, 2022 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-34339488

RESUMEN

Patients with neurodevelopmental disorders show impaired motor skill learning. It is unclear how the effect of genetic variation on synaptic function and transcriptome profile may underlie experience-dependent cortical plasticity, which supports the development of fine motor skills. RELN (reelin) is one of the genes implicated in neurodevelopmental psychiatric vulnerability. Heterozygous reeler mutant (HRM) mice displayed impairments in reach-to-grasp learning, accompanied by less extensive cortical map reorganization compared with wild-type mice, examined after 10 days of training by intracortical microstimulation. Assessed by patch-clamp recordings after 3 days of training, the training induced synaptic potentiation and increased glutamatergic-transmission of cortical layer III pyramidal neurons in wild-type mice. In contrast, the basal excitatory and inhibitory synaptic functions were depressed, affected both by presynaptic and postsynaptic impairments in HRM mice; and thus, no further training-induced synaptic plasticity occurred. HRM exhibited downregulations of cortical synaptophysin, immediate-early gene expressions, and gene enrichment, in response to 3 days of training compared with trained wild-type mice, shown using quantitative reverse transcription polymerase chain reaction, immunohistochemisty, and RNA-sequencing. We demonstrated that motor learning impairments associated with modified experience-dependent cortical plasticity are at least partially attributed by the basal synaptic alternation as well as the aberrant early experience-induced gene enrichment in HRM.


Asunto(s)
Plasticidad Neuronal , Células Piramidales , Animales , Heterocigoto , Humanos , Ratones , Ratones Mutantes Neurológicos , Destreza Motora/fisiología , Plasticidad Neuronal/genética
5.
J Cell Sci ; 133(9)2020 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-32393673

RESUMEN

Peroxisomes are single-membrane organelles present in eukaryotes. The functional importance of peroxisomes in humans is represented by peroxisome-deficient peroxisome biogenesis disorders (PBDs), including Zellweger syndrome. Defects in the genes that encode the 14 peroxins that are required for peroxisomal membrane assembly, matrix protein import and division have been identified in PBDs. A number of recent findings have advanced our understanding of the biology, physiology and consequences of functional defects in peroxisomes. In this Review, we discuss a cooperative cell defense mechanisms against oxidative stress that involves the localization of BAK (also known as BAK1) to peroxisomes, which alters peroxisomal membrane permeability, resulting in the export of catalase, a peroxisomal enzyme. Another important recent finding is the discovery of a nucleoside diphosphate kinase-like protein that has been shown to be essential for how the energy GTP is generated and provided for the fission of peroxisomes. With regard to PBDs, we newly identified a mild mutation, Pex26-F51L that causes only hearing loss. We will also discuss findings from a new PBD model mouse defective in Pex14, which manifested dysregulation of the BDNF-TrkB pathway, an essential signaling pathway in cerebellar morphogenesis. Here, we thus aim to provide a current view of peroxisome biogenesis and the molecular pathogenesis of PBDs.


Asunto(s)
Trastorno Peroxisomal , Peroxisomas , Animales , Membranas Intracelulares/metabolismo , Ratones , Peroxinas , Trastorno Peroxisomal/genética , Peroxisomas/metabolismo , Transporte de Proteínas
6.
J Neuroinflammation ; 19(1): 263, 2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36303157

RESUMEN

BACKGROUND: Optic neuritis (ON) is a common manifestation of aquaporin-4 (AQP4) antibody seropositive neuromyelitis optica (NMO). The extent of tissue damage is frequently severe, often leading to loss of visual function, and there is no curative treatment for this condition. To develop a novel therapeutic strategy, elucidating the underlying pathological mechanism using a clinically relevant experimental ON model is necessary. However, previous ON animal models have only resulted in mild lesions with limited functional impairment. In the present study, we attempted to establish a feasible ON model with severe pathological and functional manifestations using a high-affinity anti-AQP4 antibody. Subsequently, we aimed to address whether our model is suitable for potential drug evaluation by testing the effect of minocycline, a well-known microglia/macrophage inhibitor. METHODS: AQP4-immunoglobulin G (IgG)-related ON in rats was induced by direct injection of a high-affinity anti-AQP4 monoclonal antibody, E5415A. Thereafter, the pathological and functional characterizations were performed, and the therapeutic potential of minocycline was investigated. RESULTS: We established an experimental ON model that reproduces the histological characteristics of ON in seropositive NMO, such as loss of AQP4/glial fibrillary acidic protein immunoreactivity, immune cell infiltration, and extensive axonal damage. We also observed that our rat model exhibited severe visual dysfunction. The histological analysis showed prominent accumulation of macrophages/activated microglia in the lesion site in the acute phase. Thus, we investigated the possible effect of the pharmacological inhibition of macrophages/microglia activation by minocycline and revealed that it effectively ameliorated axonal damage and functional outcome. CONCLUSIONS: We established an AQP4-IgG-induced ON rat model with severe functional impairments that reproduce the histological characteristics of patients with NMO. Using this model, we revealed that minocycline treatment ameliorates functional and pathological outcomes, highlighting the usefulness of our model for evaluating potential therapeutic drugs for ON in NMO.


Asunto(s)
Neuromielitis Óptica , Neuritis Óptica , Ratas , Animales , Minociclina/uso terapéutico , Acuaporina 4 , Autoanticuerpos/metabolismo , Inmunoglobulina G/metabolismo
7.
Int Immunol ; 33(6): 301-309, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-33270108

RESUMEN

Central nervous system injury often causes lifelong impairment of neural function, because the regenerative ability of axons is limited, making a sharp contrast to the successful regeneration that is seen in the peripheral nervous system. Nevertheless, partial functional recovery is observed, because axonal branches of damaged or undamaged neurons sprout and form novel relaying circuits. Using a lot of animal models such as the spinal cord injury model or the optic nerve injury model, previous studies have identified many factors that promote or inhibit axonal regeneration or sprouting. Molecules in the myelin such as myelin-associated glycoprotein, Nogo-A or oligodendrocyte-myelin glycoprotein, or molecules found in the glial scar such as chondroitin sulfate proteoglycans, activate Ras homolog A (RhoA) signaling, which leads to the collapse of the growth cone and inhibit axonal regeneration. By contrast, axonal regeneration programs can be activated by many molecules such as regeneration-associated transcription factors, cyclic AMP, neurotrophic factors, growth factors, mechanistic target of rapamycin or immune-related molecules. Axonal sprouting and axonal regeneration largely share these mechanisms. For functional recovery, appropriate pruning or suppressing of aberrant sprouting are also important. In contrast to adults, neonates show much higher sprouting ability. Specific cell types, various mouse strains and different species show higher regenerative ability. Studies focusing on these models also identified a lot of molecules that affect the regenerative ability. A deeper understanding of the mechanisms of neural circuit repair will lead to the development of better therapeutic approaches for central nervous system injury.


Asunto(s)
Sistema Nervioso Central/fisiopatología , Neuronas/fisiología , Recuperación de la Función/fisiología , Animales , Axones/fisiología , Humanos , Transducción de Señal/fisiología
8.
Cell Mol Life Sci ; 78(8): 3907-3919, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33507328

RESUMEN

Microglia are the resident immune cells of the central nervous system, and are important for cellular processes. In addition to their classical roles in pathophysiological conditions, these immune cells also dynamically interact with neurons and influence their structure and function in physiological conditions. Microglia have been shown to contact neurons at various points, including the dendrites, cell bodies, synapses, and axons, and support various developmental functions, such as neuronal survival, axon elongation, and maturation of the synaptic circuit. This review summarizes the current knowledge regarding the roles of microglia in brain development, with particular emphasis on microglia-axon interactions. We will review recent findings regarding the functions and signaling pathways involved in the reciprocal interactions between microglia and neurons. Moreover, as these interactions are altered in disease and injury conditions, we also discuss the effect and alteration of microglia-axon interactions in disease progression and the potential role of microglia in developmental brain disorders.


Asunto(s)
Axones/metabolismo , Encefalopatías/metabolismo , Microglía/metabolismo , Sinapsis/metabolismo , Animales , Axones/patología , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Encéfalo/patología , Encefalopatías/patología , Humanos , Microglía/patología , Red Nerviosa/crecimiento & desarrollo , Red Nerviosa/metabolismo , Red Nerviosa/patología , Neuronas/metabolismo , Neuronas/patología , Sinapsis/patología
9.
J Biol Chem ; 295(16): 5321-5334, 2020 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-32165495

RESUMEN

The peroxisome is a subcellular organelle that functions in essential metabolic pathways, including biosynthesis of plasmalogens, fatty acid ß-oxidation of very-long-chain fatty acids, and degradation of hydrogen peroxide. Peroxisome biogenesis disorders (PBDs) manifest as severe dysfunction in multiple organs, including the central nervous system (CNS), but the pathogenic mechanisms in PBDs are largely unknown. Because CNS integrity is coordinately established and maintained by neural cell interactions, we here investigated whether cell-cell communication is impaired and responsible for the neurological defects associated with PBDs. Results from a noncontact co-culture system consisting of primary hippocampal neurons with glial cells revealed that a peroxisome-deficient astrocytic cell line secretes increased levels of brain-derived neurotrophic factor (BDNF), resulting in axonal branching of the neurons. Of note, the BDNF expression in astrocytes was not affected by defects in plasmalogen biosynthesis and peroxisomal fatty acid ß-oxidation in the astrocytes. Instead, we found that cytosolic reductive states caused by a mislocalized catalase in the peroxisome-deficient cells induce the elevation in BDNF secretion. Our results suggest that peroxisome deficiency dysregulates neuronal axogenesis by causing a cytosolic reductive state in astrocytes. We conclude that astrocytic peroxisomes regulate BDNF expression and thereby support neuronal integrity and function.


Asunto(s)
Astrocitos/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Neuronas/metabolismo , Trastorno Peroxisomal/metabolismo , Peroxisomas/metabolismo , Animales , Células CHO , Línea Celular , Línea Celular Tumoral , Células Cultivadas , Cricetinae , Cricetulus , Citosol/metabolismo , Ácidos Grasos/metabolismo , Hipocampo/citología , Humanos , Oxidación-Reducción , Plasmalógenos/metabolismo , Ratas , Ratas Wistar , Regulación hacia Arriba
10.
J Neurosci ; 39(38): 7615-7627, 2019 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-31346030

RESUMEN

Neuropathic pain is a chronic condition that occurs frequently after nerve injury and induces hypersensitivity or allodynia characterized by aberrant neuronal excitability in the spinal cord dorsal horn. Fibronectin leucine-rich transmembrane protein 3 (FLRT3) is a modulator of neurite outgrowth, axon pathfinding, and cell adhesion, which is upregulated in the dorsal horn following peripheral nerve injury. However, the function of FLRT3 in adults remains unknown. Therefore, we aimed to investigate the involvement of spinal FLRT3 in neuropathic pain using rodent models. In the dorsal horns of male rats, FLRT3 protein levels increased at day 4 after peripheral nerve injury. In the DRG, FLRT3 was expressed in activating transcription factor 3-positive, injured sensory neurons. Peripheral nerve injury stimulated Flrt3 transcription in the DRG but not in the spinal cord. Intrathecal administration of FLRT3 protein to naive rats induced mechanical allodynia and GluN2B phosphorylation in the spinal cord. DRG-specific FLRT3 overexpression using adeno-associated virus also produced mechanical allodynia. Conversely, a function-blocking FLRT3 antibody attenuated mechanical allodynia after partial sciatic nerve ligation. Therefore, FLRT3 derived from injured DRG neurons increases dorsal horn excitability and induces mechanical allodynia.SIGNIFICANCE STATEMENT Neuropathic pain occurs frequently after nerve injury and is associated with abnormal neuronal excitability in the spinal cord. Fibronectin leucine-rich transmembrane protein 3 (FLRT3) regulates neurite outgrowth and cell adhesion. Here, nerve injury increased FLRT3 protein levels in the spinal cord dorsal root, despite the fact that Flrt3 transcripts were only induced in the DRG. FLRT3 protein injection into the rat spinal cord induced mechanical hypersensitivity, as did virus-mediated FLRT3 overexpression in DRG. Conversely, FLRT3 inhibition with antibodies attenuated mechanically induced pain after nerve damage. These findings suggest that FLRT3 is produced by injured DRG neurons and increases neuronal excitability in the dorsal horn, leading to pain sensitization. Neuropathic pain induction is a novel function of FLRT3.


Asunto(s)
Ganglios Espinales/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuralgia/metabolismo , Asta Dorsal de la Médula Espinal/metabolismo , Animales , Humanos , Hiperalgesia/metabolismo , Ligadura , Masculino , Glicoproteínas de Membrana/farmacología , Ratas , Ratas Wistar , Nervio Ciático/lesiones , Nervio Ciático/cirugía , Asta Dorsal de la Médula Espinal/efectos de los fármacos
11.
J Pharmacol Sci ; 144(3): 102-118, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32921391

RESUMEN

Chronic microglial activation is associated with the pathogenesis of several CNS disorders. Microglia show phenotypic diversity and functional complexity in diseased CNS. Thus, understanding the pathology-specific heterogeneity of microglial behavior is crucial for the future development of microglia-modulating therapy for variety of CNS disorders. This review summarizes up-to-date knowledge on how microglia contribute to CNS homeostasis during development and throughout adulthood. We discuss the heterogeneity of microglial phenotypes in the context of CNS disorders with an emphasis on neurodegenerative diseases, demyelinating diseases, CNS trauma, and epilepsy. We conclude this review with a discussion about the disease-specific heterogeneity of microglial function and how it could be exploited for therapeutic intervention.


Asunto(s)
Enfermedades del Sistema Nervioso Central/etiología , Enfermedades del Sistema Nervioso Central/terapia , Microglía/patología , Microglía/fisiología , Enfermedades del Sistema Nervioso Central/patología , Enfermedades Desmielinizantes/etiología , Enfermedades Desmielinizantes/patología , Enfermedades Desmielinizantes/terapia , Epilepsia/etiología , Epilepsia/patología , Epilepsia/terapia , Homeostasis , Humanos , Enfermedades Neurodegenerativas/etiología , Enfermedades Neurodegenerativas/patología , Enfermedades Neurodegenerativas/terapia , Fenotipo
12.
Cereb Cortex ; 29(2): 561-572, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29315368

RESUMEN

Axons in the mature mammalian central nervous system have only a limited capacity to grow/regenerate after injury, and spontaneous recovery of motor functions is therefore not greatly expected in spinal cord injury (SCI). To promote functional recovery after SCI, it is critical that corticospinal tract (CST) fibers reconnect properly with target spinal neurons through enhanced axonal growth/regeneration. Here, we applied antibody treatment against repulsive guidance molecule-a (RGMa) to a monkey model of SCI. We found that inhibition of upregulated RGMa around the lesioned site in the cervical cord resulted in recovery from impaired manual dexterity by accentuated penetration of CST fibers into laminae VII and IX, where spinal interneurons and motoneurons are located, respectively. Furthermore, pharmacological inactivation following intracortical microstimulation revealed that the contralesional, but not the ipsilesional, primary motor cortex was crucially involved in functional recovery at a late stage in our SCI model. The present data indicate that treatment with the neutralizing antibody against RGMa after SCI is a potential target for achieving restored manual dexterity in primates.


Asunto(s)
Anticuerpos Neutralizantes/administración & dosificación , Proteínas Ligadas a GPI/metabolismo , Fuerza de la Mano/fisiología , Corteza Motora/fisiología , Proteínas del Tejido Nervioso/metabolismo , Recuperación de la Función/fisiología , Traumatismos de la Médula Espinal/metabolismo , Secuencia de Aminoácidos , Animales , Femenino , Proteínas Ligadas a GPI/antagonistas & inhibidores , Humanos , Macaca mulatta , Masculino , Corteza Motora/efectos de los fármacos , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Primates , Recuperación de la Función/efectos de los fármacos , Traumatismos de la Médula Espinal/tratamiento farmacológico , Resultado del Tratamiento
13.
J Neurosci ; 38(10): 2589-2604, 2018 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-29440387

RESUMEN

Nogo receptor type 1 (NgR1) is known to inhibit neuronal regeneration in the CNS. Previously, we have shown that lateral olfactory tract usher substance (LOTUS) interacts with NgR1 and inhibits its function by blocking its ligand binding. Therefore, LOTUS is expected to have therapeutic potential for the promotion of neuronal regeneration. However, it remains unknown whether the soluble form of LOTUS (s-LOTUS) also has an inhibitory action on NgR1 function as a candidate for therapeutic agents. Here, we show that s-LOTUS inhibits NgR1-mediated signaling by inhibiting the molecular interaction between NgR1 and its coreceptor, p75 neurotrophin receptor (p75NTR). In contrast to the membrane-bound form of LOTUS, s-LOTUS did not block ligand binding to NgR1. However, we identified p75NTR as a novel LOTUS binding partner and found that s-LOTUS suppressed the interaction between p75NTR and NgR1. s-LOTUS inhibited myelin-associated inhibitor (MAI)-induced RhoA activation in murine cortical neurons. Functional analyses revealed that s-LOTUS inhibited MAI-induced growth cone collapse and neurite outgrowth inhibition in chick DRG neurons. In addition, whereas olfactory bulb neurons of lotus-KO mice are sensitive to MAI due to a lack of LOTUS expression, treatment with s-LOTUS inhibited MAI-induced growth cone collapse in these neurons. Finally, we observed that s-LOTUS promoted axonal regeneration in optic nerve crush injury of mice (either sex). These findings suggest that s-LOTUS inhibits NgR1-mediated signaling, possibly by interfering with the interaction between NgR1 and p75NTR Therefore, s-LOTUS may have potential as a therapeutic agent for neuronal regeneration in the damaged CNS.SIGNIFICANCE STATEMENT Nogo receptor type 1 (NgR1) is a receptor well known to inhibit neuronal regeneration in the CNS. Because the membrane-bound form of lateral olfactory tract usher substance (LOTUS) antagonizes NgR1 through a cis-type molecular interaction between LOTUS and NgR1, the soluble form of LOTUS (s-LOTUS) is expected to be a therapeutic agent for neuronal regeneration. In our present study, we show that s-LOTUS inhibits the interaction between NgR1 and p75NTR, NgR1 ligand-induced RhoA activation, growth cone collapse, and neurite outgrowth inhibition and promotes axonal regeneration. Our results indicate that s-LOTUS inhibits NgR1-mediated signaling through a trans-type molecular interaction between LOTUS and NgR1 and, therefore, s-LOTUS may have therapeutic potential for neuronal regeneration.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Receptor Nogo 1/efectos de los fármacos , Receptores de Factor de Crecimiento Nervioso/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Embrión de Pollo , Femenino , Conos de Crecimiento/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Glicoproteína Asociada a Mielina/antagonistas & inhibidores , Compresión Nerviosa , Regeneración Nerviosa/efectos de los fármacos , Neuritas/efectos de los fármacos , Neuronas/efectos de los fármacos , Receptor Nogo 1/metabolismo , Bulbo Olfatorio/citología , Bulbo Olfatorio/efectos de los fármacos , Proteínas de Unión al GTP rho/antagonistas & inhibidores , Proteína de Unión al GTP rhoA
14.
J Neurosci ; 38(3): 613-630, 2018 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-29196317

RESUMEN

During embryonic development, axons extend over long distances to establish functional connections. In contrast, axon regeneration in the adult mammalian CNS is limited in part by a reduced intrinsic capacity for axon growth. Therefore, insight into the intrinsic control of axon growth may provide new avenues for enhancing CNS regeneration. Here, we performed one of the first miRNome-wide functional miRNA screens to identify miRNAs with robust effects on axon growth. High-content screening identified miR-135a and miR-135b as potent stimulators of axon growth and cortical neuron migration in vitro and in vivo in male and female mice. Intriguingly, both of these developmental effects of miR-135s relied in part on silencing of Krüppel-like factor 4 (KLF4), a well known intrinsic inhibitor of axon growth and regeneration. These results prompted us to test the effect of miR-135s on axon regeneration after injury. Our results show that intravitreal application of miR-135s facilitates retinal ganglion cell (RGC) axon regeneration after optic nerve injury in adult mice in part by repressing KLF4. In contrast, depletion of miR-135s further reduced RGC axon regeneration. Together, these data identify a novel neuronal role for miR-135s and the miR-135-KLF4 pathway and highlight the potential of miRNAs as tools for enhancing CNS axon regeneration.SIGNIFICANCE STATEMENT Axon regeneration in the adult mammalian CNS is limited in part by a reduced intrinsic capacity for axon growth. Therefore, insight into the intrinsic control of axon growth may provide new avenues for enhancing regeneration. By performing an miRNome-wide functional screen, our studies identify miR-135s as stimulators of axon growth and neuron migration and show that intravitreal application of these miRNAs facilitates CNS axon regeneration after nerve injury in adult mice. Intriguingly, these developmental and regeneration-promoting effects rely in part on silencing of Krüppel-like factor 4 (KLF4), a well known intrinsic inhibitor of axon regeneration. Our data identify a novel neuronal role for the miR-135-KLF4 pathway and support the idea that miRNAs can be used for enhancing CNS axon regeneration.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Factores de Transcripción de Tipo Kruppel/metabolismo , MicroARNs/metabolismo , Regeneración Nerviosa/fisiología , Animales , Axones/metabolismo , Femenino , Humanos , Factor 4 Similar a Kruppel , Masculino , Ratones , Ratones Endogámicos C57BL , Células Ganglionares de la Retina/fisiología
15.
Glia ; 67(9): 1694-1704, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31106910

RESUMEN

Secondary progressive multiple sclerosis (SPMS) is an autoimmune disease of the central nervous system (CNS) characterized by progressive motor dysfunction, sensory deficits, and visual problems. The pathological mechanism of SPMS remains poorly understood. In this study, we investigated the role of microglia, immune cells in the CNS, in a secondary progressive form of experimental autoimmune encephalomyelitis (EAE), the mouse model of SPMS. We induced EAE in nonobese diabetic mice and treated the EAE mice with PLX3397, an antagonist of colony stimulating factor-1 receptor, during secondary progression in order to deplete microglia. The results showed that PLX3397 treatment significantly exacerbated secondary progression of EAE and increased mortality rates. Additionally, histological analysis showed that PLX3397 treatment significantly promoted inflammation, demyelination, and axonal degeneration. Moreover, the number of CD4+ T cells in the spinal cord of EAE mice was expanded due to PLX3397-mediated proliferation. These results suggest that microglia suppressed secondary progression of EAE by inhibiting the proliferation of CD4+ T cells in the CNS.


Asunto(s)
Encefalomielitis Autoinmune Experimental/fisiopatología , Microglía/fisiología , Esclerosis Múltiple Crónica Progresiva/fisiopatología , Animales , Linfocitos T CD4-Positivos/patología , Linfocitos T CD4-Positivos/fisiología , Proliferación Celular/fisiología , Encefalomielitis Autoinmune Experimental/patología , Femenino , Inflamación/patología , Inflamación/fisiopatología , Ratones Endogámicos NOD , Microglía/patología , Esclerosis Múltiple Crónica Progresiva/patología , Médula Espinal/patología , Médula Espinal/fisiopatología
16.
BMC Genomics ; 20(1): 619, 2019 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-31362699

RESUMEN

BACKGROUND: The regenerative ability of severed axons in the central nervous system is limited in mammals. However, after central nervous system injury, neural function is partially recovered by the formation of a compensatory neural circuit. In a mouse pyramidotomy model, axonal sprouting of the intact side of the corticospinal tract is observed in the spinal cord, and the axons make new synapses with the denervated side of propriospinal neurons. Moreover, this sprouting ability is enhanced in neonatal mice compared to that in adult mice. Myelin-associated molecules in the spinal cord or intrinsic factors in corticospinal neurons have been investigated in previous studies, but the factors that determine elevated sprouting ability in neonatal mice are not fully understood. Further, in the early phase after pyramidotomy, glial responses are observed in the spinal cord. To elucidate the basal difference in the spinal cord, we compared gene expression profiles of entire C4-7 cervical cord tissues between neonatal (injured at postnatal day 7) and adult (injured at 8 weeks of age) mice by RNA-sequencing. We also tried to identify discordant gene expression changes that might inhibit axonal sprouting in adult mice at the early phase (3 days) after pyramidotomy. RESULTS: A comparison of neonatal and adult sham groups revealed remarkable basal differences in the spinal cord, such as active neural circuit formation, cell proliferation, the development of myelination, and an immature immune system in neonatal mice compared to that observed in adult mice. Some inflammation-related genes were selectively expressed in adult mice after pyramidotomy, implying the possibility that these genes might be related to the low sprouting ability in adult mice. CONCLUSIONS: This study provides useful information regarding the basal difference between neonatal and adult spinal cords and the possible differential response after pyramidotomy, both of which are necessary to understand why sprouting ability is increased in neonatal mice compared to that in adult mice.


Asunto(s)
Envejecimiento/genética , Envejecimiento/fisiología , Perfilación de la Expresión Génica , Médula Espinal/crecimiento & desarrollo , Médula Espinal/metabolismo , Animales , Animales Recién Nacidos , Axones/metabolismo , Ratones , Médula Espinal/citología
17.
Int Immunol ; 30(10): 437-444, 2018 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-29917120

RESUMEN

During brain development, the generation of neurons and glial cells is rigorously regulated by diverse mechanisms including the immune system. Dysfunction of the developing system results in the onset of neurodevelopmental disorders and psychological disorders. Recent studies have demonstrated that the immune system is implicated in brain development. As the central nervous system is physically separated from the circulatory system by the blood-brain barrier, circulating immune cells are unable to infiltrate into the brain parenchyma. However, several studies have demonstrated that immune cells, such as B cells, T cells and macrophages, are observed in the meningeal space, perivascular space and choroid plexus and have crucial roles in brain function. Moreover, genome-wide association studies have revealed that the immune system is implicated in neurodevelopmental disorders and psychological disorders. Here, we discuss the role of each of these immune cell types in brain development and the association with neurodevelopmental disorders.


Asunto(s)
Linfocitos B/inmunología , Encéfalo/crecimiento & desarrollo , Encéfalo/inmunología , Macrófagos/inmunología , Trastornos del Neurodesarrollo/inmunología , Linfocitos T/inmunología , Animales , Encéfalo/patología , Humanos , Trastornos del Neurodesarrollo/patología
18.
Biochem Biophys Res Commun ; 500(3): 609-613, 2018 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-29679562

RESUMEN

Muscle cells secrete numerous molecules that function as endocrine hormones and regulate the functions of distant organs. Myelination in the central nervous system (CNS) is regulated by peripheral hormones. However, the effects of muscle-derived molecules on myelination have not been sufficiently analyzed. In this study, we show that muscle-releasing factors promote proliferation of oligodendrocyte precursor cells (OPCs), which is an element of myelination process. Supernatants of mouse myotube cultures stimulated bromodeoxyuridine (BrdU) incorporation into mouse OPCs. Mouse myotube supernatants did not enhance mouse OPC transmigration and myelin basic protein (MBP) expression. RNA sequencing identified candidate genes with hormonal functions that were expressed in mouse myotubes. These data support the possibility that hormonal molecules secreted by myotubes contribute to OPC proliferation and myelination.


Asunto(s)
Fibras Musculares Esqueléticas/metabolismo , Células Precursoras de Oligodendrocitos/citología , Células Precursoras de Oligodendrocitos/metabolismo , Animales , Línea Celular , Proliferación Celular , Ratones Endogámicos C57BL , Fibras Musculares Esqueléticas/citología , ARN/metabolismo
19.
J Neurochem ; 142(5): 686-699, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28628214

RESUMEN

It has been established that voltage-gated proton channels (VSOP/Hv1), encoded by Hvcn1, support reactive oxygen species (ROS) production in phagocytic activities of neutrophils (El Chemaly et al. ) and antibody production in B lymphocytes (Capasso et al. ). VSOP/Hv1 is a potential therapeutic target for brain ischemia, since Hvcn1 deficiency reduces microglial ROS production and protects brain from neuronal damage (Wu et al. ). In the present study, we report that VSOP/Hv1 has paradoxical suppressive role in ROS production in microglia. Extracellular ROS production was lower in neutrophils of Hvcn1-/- mice than WT mice as reported. In contrast, it was drastically enhanced in isolated Hvcn1-/- microglia as compared with cells from WT mice. Actin dynamics was altered in Hvcn1-/- microglia and intracellular distribution of cytosolic NADPH oxidase subunit, p67, was changed. When expression levels of oxidative stress responsive antioxidant genes were compared between WT and Hvcn1-/- in cerebral cortex at different ages of animals, they were slightly decreased in Hvcn1-/- mice at younger stage (1 day, 5 days, 3 weeks old), but drastically increased at aged stage (6 months old), suggesting that the regulation of microglial ROS production by VSOP/Hv1 is age-dependent. We also performed brain ischemic stroke experiments and found that the neuroprotective effect of VSOP/Hv1deficiency on infarct volume depended on the age of animals. Taken together, regulation of ROS production by VSOP/Hv1 is more complex than previously thought and significance of VSOP/Hv1 in microglial ROS production depends on age.


Asunto(s)
Isquemia Encefálica/metabolismo , Encéfalo/metabolismo , Canales Iónicos/fisiología , Microglía/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Isquemia Encefálica/prevención & control , Células Cultivadas , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Ratones Noqueados , Ratones Transgénicos , Neutrófilos/metabolismo , Estrés Oxidativo/fisiología
20.
Biochem Biophys Res Commun ; 482(4): 1160-1164, 2017 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-27919687

RESUMEN

The heart produces multiple diffusible factors that are involved in a number of physiological processes, but the action of these factors on the central nervous system is not well understood. In this study, we found that one or more factors released by cardiomyocytes promote oligodendrocyte precursor cell (OPC) proliferation in vitro. Mouse OPCs co-cultured with mouse cardiomyocytes showed higher proliferative ability than OPCs cultured alone. In addition, cardiomyocyte-conditioned media was sufficient to promote OPC proliferation. The phosphorylation of phosphatidylinositol (PI) 3-kinase and extracellular signal-regulated kinase (ERK) in OPCs is necessary for the enhancement of OPC proliferation by cardiomyocyte-conditioned media. These data indicate that heart-derived factors have the ability to directly regulate the function of central nervous system (CNS) cells.


Asunto(s)
Proliferación Celular , Miocitos Cardíacos/citología , Oligodendroglía/citología , Animales , Encéfalo/metabolismo , Diferenciación Celular , Células Cultivadas , Sistema Nervioso Central/metabolismo , Técnicas de Cocultivo , Medios de Cultivo Condicionados , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Ratones , Ratones Endogámicos C57BL , Esclerosis Múltiple/metabolismo , Vaina de Mielina/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA