Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Int J Mol Sci ; 23(21)2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36361749

RESUMEN

Nna1/CCP1 is generally known as a causative gene for a spontaneous autosomal recessive mouse mutation, Purkinje cell degeneration (pcd). There is enough evidence that the cytosolic function of the zinc carboxypeptidase (CP) domain at the C-terminus of the Nna1 protein is associated with cell death. On the other hand, this molecule's two nuclear localization signals (NLSs) suggest some other functions exist. We generated exon 3-deficient mice (Nna1N KO), which encode a portion of the N-terminal NLS. Despite the frameshift occurring in these mice, there was an expression of the Nna1 protein lacking the N-terminal side. Surprisingly, the pcd phenotype did not occur in the Nna1N KO mouse. Behavioral analysis revealed that they were less anxious when assessed by the elevated plus maze and the light/dark box tests compared to the control. Furthermore, they showed impairments in context-dependent and sound stimulus-dependent learning. Biochemical analysis of Nna1N KO mice revealed a reduced level of the AMPA-type glutamine receptor GluA2 in the hippocampal synaptosomal fraction. In addition, the motor protein kinesin-1, which transports GluA2 to dendrites, was also decreased. These results indicate that Nna1 is also involved in emotion and memory learning, presumably through the trafficking and expression of synaptic signaling molecules, besides a known role in cell survival.


Asunto(s)
Células de Purkinje , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina , Ratones , Animales , Células de Purkinje/patología , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/química , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/genética , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/metabolismo , Supervivencia Celular/genética , Proteínas de Unión al GTP/metabolismo , Degeneración Nerviosa/metabolismo , Emociones
2.
Proc Natl Acad Sci U S A ; 115(13): 3434-3439, 2018 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-29531056

RESUMEN

Adequate sleep is essential for physical and mental health. We previously identified a missense mutation in the human DEC2 gene (BHLHE41) leading to the familial natural short sleep behavioral trait. DEC2 is a transcription factor regulating the circadian clock in mammals, although its role in sleep regulation has been unclear. Here we report that prepro-orexin, also known as hypocretin (Hcrt), gene expression is increased in the mouse model expressing the mutant hDEC2 transgene (hDEC2-P384R). Prepro-orexin encodes a precursor protein of a neuropeptide producing orexin A and B (hcrt1 and hcrt2), which is enriched in the hypothalamus and regulates maintenance of arousal. In cell culture, DEC2 suppressed prepro-orexin promoter-luc (ore-luc) expression through cis-acting E-box elements. The mutant DEC2 has less repressor activity than WT-DEC2, resulting in increased orexin expression. DEC2-binding affinity for the prepro-orexin gene promoter is decreased by the P384R mutation, likely due to weakened interaction with other transcription factors. In vivo, the decreased immobility time of the mutant transgenic mice is attenuated by an orexin receptor antagonist. Our results suggested that DEC2 regulates sleep/wake duration, at least in part, by modulating the neuropeptide hormone orexin.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Regulación de la Expresión Génica , Mutación , Orexinas/genética , Regiones Promotoras Genéticas , Sueño/fisiología , Animales , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Orexinas/metabolismo
3.
FASEB J ; 33(2): 2484-2497, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30265576

RESUMEN

Excess energy intake causes obesity, which leads to insulin resistance and various other complications of metabolic syndrome, including diabetes, atherosclerosis, dyslipidemia, and nonalcoholic fatty liver disease. Although recent studies have depicted altered lipid metabolism as an underlying feature, the detailed mechanisms are still unclear. Here we describe a possible role in high-fat diet (HFD)-induced obesity for monoacylglycerol lipase (MGL), an enzyme that is also known to hydrolyze the endocannabinoid 2-arachidonoylglycerol in brain. MGL-deficient [MGL-knockout (KO)] mice fed a HFD gained less body weight than wild-type mice and were protected from insulin resistance and hepatic steatosis. Food intake and energy expenditure were not altered in MGL-KO mice, but blood triglyceride levels after oral olive oil gavage were suppressed, indicating a role for MGL in intestinal fat absorption. Experiments with cannabinoid receptor type 1 (CB1)/MGL double-KO mice revealed that these phenotypes may include mechanisms that are independent of CB1-receptor-mediated endocannabinoid functions. We also noted that MGL-KO mice had less preference for HFD over normal chow diet. Oral but not intraperitoneal lipid administration strongly suppressed the appetites of MGL-KO and CB1/MGL double-KO mice, but not of wild-type and CB1-KO mice. Appetite suppression was reversed by vagotomy, suggesting involvement of MGL in the gut-brain axis regulation of appetite. Our results provide mechanistic insights of MGL's role in diet-induced obesity, lipid metabolic disorder, and regulation of appetite.-Yoshida, K., Kita, Y., Tokuoka, S. M., Hamano, F., Yamazaki, M., Sakimura, K., Kano, M., Shimizu, T. Monoacylglycerol lipase deficiency affects diet-induced obesity, fat absorption, and feeding behavior in CB1 cannabinoid receptor-deficient mice.


Asunto(s)
Asialoglicoproteínas/deficiencia , Dieta Alta en Grasa/efectos adversos , Hígado Graso/patología , Conducta Alimentaria , Absorción Intestinal , Lectinas Tipo C/deficiencia , Proteínas de la Membrana/deficiencia , Obesidad/patología , Receptor Cannabinoide CB1/fisiología , Animales , Peso Corporal , Ingestión de Alimentos , Metabolismo Energético , Hígado Graso/etiología , Hígado Graso/metabolismo , Resistencia a la Insulina , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/etiología , Obesidad/metabolismo
4.
J Neurosci ; 38(47): 10220-10235, 2018 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-30355633

RESUMEN

Synaptic AMPAR expression controls the strength of excitatory synaptic transmission and plasticity. An excess of synaptic AMPARs leads to epilepsy in response to seizure-inducible stimulation. The appropriate regulation of AMPARs plays a crucial role in the maintenance of the excitatory/inhibitory synaptic balance; however, the detailed mechanisms underlying epilepsy remain unclear. Our previous studies have revealed that a key modification of AMPAR trafficking to and from postsynaptic membranes is the reversible, posttranslational S-palmitoylation at the C-termini of receptors. To clarify the role of palmitoylation-dependent regulation of AMPARs in vivo, we generated GluA1 palmitoylation-deficient (Cys811 to Ser substitution) knock-in mice. These mutant male mice showed elevated seizure susceptibility and seizure-induced neuronal activity without impairments in synaptic transmission, gross brain structure, or behavior at the basal level. Disruption of the palmitoylation site was accompanied by upregulated GluA1 phosphorylation at Ser831, but not at Ser845, in the hippocampus and increased GluA1 protein expression in the cortex. Furthermore, GluA1 palmitoylation suppressed excessive spine enlargement above a certain size after LTP. Our findings indicate that an abnormality in GluA1 palmitoylation can lead to hyperexcitability in the cerebrum, which negatively affects the maintenance of network stability, resulting in epileptic seizures.SIGNIFICANCE STATEMENT AMPARs predominantly mediate excitatory synaptic transmission. AMPARs are regulated in a posttranslational, palmitoylation-dependent manner in excitatory synapses of the mammalian brain. Reversible palmitoylation dynamically controls synaptic expression and intracellular trafficking of the receptors. Here, we generated GluA1 palmitoylation-deficient knock-in mice to clarify the role of AMPAR palmitoylation in vivo We showed that an abnormality in GluA1 palmitoylation led to hyperexcitability, resulting in epileptic seizure. This is the first identification of a specific palmitoylated protein critical for the seizure-suppressing process. Our data also provide insight into how predicted receptors such as AMPARs can effectively preserve network stability in the brain. Furthermore, these findings help to define novel key targets for developing anti-epileptic drugs.


Asunto(s)
Hipocampo/metabolismo , Hipocampo/fisiopatología , Palmitatos/metabolismo , Receptores AMPA/deficiencia , Convulsiones/metabolismo , Convulsiones/fisiopatología , Animales , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Técnicas de Cultivo de Órganos , Receptores AMPA/genética , Convulsiones/genética
5.
Proc Natl Acad Sci U S A ; 113(11): E1536-44, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26903630

RESUMEN

In humans, the connection between sleep and mood has long been recognized, although direct molecular evidence is lacking. We identified two rare variants in the circadian clock gene PERIOD3 (PER3-P415A/H417R) in humans with familial advanced sleep phase accompanied by higher Beck Depression Inventory and seasonality scores. hPER3-P415A/H417R transgenic mice showed an altered circadian period under constant light and exhibited phase shifts of the sleep-wake cycle in a short light period (photoperiod) paradigm. Molecular characterization revealed that the rare variants destabilized PER3 and failed to stabilize PERIOD1/2 proteins, which play critical roles in circadian timing. Although hPER3-P415A/H417R-Tg mice showed a mild depression-like phenotype, Per3 knockout mice demonstrated consistent depression-like behavior, particularly when studied under a short photoperiod, supporting a possible role for PER3 in mood regulation. These findings suggest that PER3 may be a nexus for sleep and mood regulation while fine-tuning these processes to adapt to seasonal changes.


Asunto(s)
Afecto/fisiología , Proteínas Circadianas Period/genética , Trastorno Afectivo Estacional/genética , Anciano , Secuencia de Aminoácidos , Animales , Relojes Circadianos/genética , Femenino , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Persona de Mediana Edad , Datos de Secuencia Molecular , Proteínas Circadianas Period/metabolismo , Fotoperiodo , Estabilidad Proteica , Trastornos del Sueño del Ritmo Circadiano/genética
6.
J Neurochem ; 147(4): 557-572, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30225910

RESUMEN

Purkinje cell degeneration (pcd) was first identified in a spontaneous mouse mutant showing cerebellar ataxia. In addition to cerebellar Purkinje cells (PCs), retinal photoreceptors, mitral cells in the olfactory bulb, and a discrete subpopulation of thalamic neurons also degenerate in the mutant brains. The gene responsible for the pcd mutant is Nna1, also known as ATP/GTP binding protein 1 or cytosolic carboxypeptidase-like 1, which encodes a zinc carboxypeptidase protein. To investigate pathogenesis of the pcd mutation in detail, we generated a conditional Nna1 allele targeting the carboxypeptidase domain at C-terminus. After Cre recombination and heterozygous crossing, we generated Nna1 knockout (KO) mice and found that the Nna1 KO mice began to show cerebellar ataxia at postnatal day 20 (P20). Most PCs degenerated until 4-week-old, except lobule X. Activated microglia and astrocytes were also observed in the Nna1 KO cerebellum. In the mutant brain, the Nna1 mRNA level was dramatically reduced, suggesting that nonsense-mediated mRNA decay occurs in it. Since the Nna1 protein acts as a de-glutamatase on the C-terminus of α-tubulin and ß-tubulin, increased polyglutamylated tubulin was detected in the Nna1 KO cerebellum. In addition, the endoplasmic reticulum stress marker, C/EBP homologous protein (CHOP), was up-regulated in the mutant PCs. We report the generation of a functional Nna1 conditional allele and possible mechanisms of PC death in the Nna1 KO in the cerebellum. OPEN PRACTICES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.


Asunto(s)
Proteínas de Unión al GTP/genética , Degeneración Nerviosa/genética , Degeneración Nerviosa/patología , Células de Purkinje/patología , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/genética , Alelos , Animales , Conducta Animal , Carboxipeptidasas , Ataxia Cerebelosa/genética , Cerebelo/metabolismo , Cerebelo/patología , Estrés del Retículo Endoplásmico/genética , Exones/genética , Femenino , Eliminación de Gen , Masculino , Ratones , Ratones Noqueados , Mutación/genética , Degeneración Nerviosa/psicología , Fenotipo , Desempeño Psicomotor , Factor de Transcripción CHOP/genética , Factor de Transcripción CHOP/metabolismo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
7.
J Cell Sci ; 129(14): 2757-66, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27257088

RESUMEN

Nine outer doublet microtubules in axonemes of flagella and cilia are heterogeneous in structure and biochemical properties. In mammalian sperm flagella, one of the factors to generate the heterogeneity is tubulin polyglutamylation, although the importance of the heterogeneous modification is unclear. Here, we show that a tubulin polyglutamylase Ttll9 deficiency (Ttll9(-/-)) causes a unique set of phenotypes related to doublet heterogeneity. Ttll9(-/-) sperm axonemes had frequent loss of a doublet and reduced polyglutamylation. Intriguingly, the doublet loss selectively occurred at the distal region of doublet 7, and reduced polyglutamylation was observed preferentially on doublet 5. Ttll9(-/-) spermatozoa showed aberrant flagellar beating, characterized by frequent stalls after anti-hook bending. This abnormal motility could be attributed to the reduction of polyglutamylation on doublet 5, which probably occurred at a position involved in the switching of bending. These results indicate that mammalian Ttll9 plays essential roles in maintaining the normal structure and beating pattern of sperm flagella by establishing normal heterogeneous polyglutamylation patterns.


Asunto(s)
Glutamatos/metabolismo , Péptido Sintasas/deficiencia , Motilidad Espermática/fisiología , Cola del Espermatozoide/fisiología , Animales , Axonema/metabolismo , Axonema/ultraestructura , Recuento de Células , Femenino , Infertilidad Masculina/patología , Masculino , Ratones Endogámicos C57BL , Péptido Sintasas/metabolismo , Cola del Espermatozoide/ultraestructura , Espermatozoides/metabolismo , Espermatozoides/ultraestructura
8.
Proc Natl Acad Sci U S A ; 112(4): E371-9, 2015 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-25583485

RESUMEN

Transmembrane AMPA receptor regulatory proteins (TARPs) play an essential role in excitatory synaptic transmission throughout the central nervous system (CNS) and exhibit subtype-specific effects on AMPA receptor (AMPAR) trafficking, gating, and pharmacology. The function of TARPs has largely been determined through work on canonical type I TARPs such as stargazin (TARP γ-2), absent in the ataxic stargazer mouse. Little is known about the function of atypical type II TARPs, such as TARP γ-7, which exhibits variable effects on AMPAR function. Because γ-2 and γ-7 are both strongly expressed in multiple cell types in the cerebellum, we examined the relative contribution of γ-2 and γ-7 to both synaptic transmission in the cerebellum and motor behavior by using both the stargazer mouse and a γ-7 knockout (KO) mouse. We found that the loss of γ-7 alone had little effect on climbing fiber (cf) responses in Purkinje neurons (PCs), yet the additional loss of γ-2 all but abolished cf responses. In contrast, γ-7 failed to make a significant contribution to excitatory transmission in stellate cells and granule cells. In addition, we generated a PC-specific deletion of γ-2, with and without γ-7 KO background, to examine the relative contribution of γ-2 and γ-7 to PC-dependent motor behavior. Selective deletion of γ-2 in PCs had little effect on motor behavior, yet the additional loss of γ-7 resulted in a severe disruption in motor behavior. Thus, γ-7 is capable of supporting a component of excitatory transmission in PCs, sufficient to maintain essentially normal motor behavior, in the absence of γ-2.


Asunto(s)
Conducta Animal , Canales de Calcio/metabolismo , Proteínas de la Membrana/metabolismo , Actividad Motora , Células de Purkinje/metabolismo , Transmisión Sináptica , Animales , Ataxia/genética , Ataxia/metabolismo , Ataxia/patología , Canales de Calcio/genética , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Células de Purkinje/patología , Receptores AMPA/genética , Receptores AMPA/metabolismo
9.
J Neurosci ; 36(15): 4296-312, 2016 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-27076426

RESUMEN

The number of AMPA-type glutamate receptors (AMPARs) at synapses is the major determinant of synaptic strength and varies from synapse to synapse. To clarify the underlying molecular mechanisms, the density of AMPARs, PSD-95, and transmembrane AMPAR regulatory proteins (TARPs) were compared at Schaffer collateral/commissural (SCC) synapses in the adult mouse hippocampal CA1 by quantitative immunogold electron microscopy using serial sections. We examined four types of SCC synapses: perforated and nonperforated synapses on pyramidal cells and axodendritic synapses on parvalbumin-positive (PV synapse) and pravalbumin-negative interneurons (non-PV synapse). SCC synapses were categorized into those expressing high-density (perforated and PV synapses) or low-density (nonperforated and non-PV synapses) AMPARs. Although the density of PSD-95 labeling was fairly constant, the density and composition of TARP isoforms was highly variable depending on the synapse type. Of the three TARPs expressed in hippocampal neurons, the disparity in TARP γ-2 labeling was closely related to that of AMPAR labeling. Importantly, AMPAR density was significantly reduced at perforated and PV synapses in TARP γ-2-knock-out (KO) mice, resulting in a virtual loss of AMPAR disparity among SCC synapses. In comparison, TARP γ-8 was the only TARP expressed at nonperforated synapses, where AMPAR labeling further decreased to a background level in TARP γ-8-KO mice. These results show that synaptic inclusion of TARP γ-2 potently increases AMPAR expression and transforms low-density synapses into high-density ones, whereas TARP γ-8 is essential for low-density or basal expression of AMPARs at nonperforated synapses. Therefore, these TARPs are critically involved in AMPAR density control at SCC synapses. SIGNIFICANCE STATEMENT: Although converging evidence implicates the importance of transmembrane AMPA-type glutamate receptor (AMPAR) regulatory proteins (TARPs) in AMPAR stabilization during basal transmission and synaptic plasticity, how they control large disparities in AMPAR numbers or densities across central synapses remains largely unknown. We compared the density of AMPARs with that of TARPs among four types of Schaffer collateral/commissural (SCC) hippocampal synapses in wild-type and TARP-knock-out mice. We show that the density of AMPARs correlates with that of TARP γ-2 across SCC synapses and its high expression is linked to high-density AMPAR expression at perforated type of pyramidal cell synapses and synapses on parvalbumin-positive interneurons. In comparison, TARP γ-8 is the only TARP expressed at nonperforated type of pyramidal cell synapses, playing an essential role in low-density or basal AMPAR expression.


Asunto(s)
Región CA1 Hipocampal/fisiología , Canales de Calcio/fisiología , Receptores AMPA/metabolismo , Sinapsis/fisiología , Animales , Canales de Calcio/genética , Homólogo 4 de la Proteína Discs Large , Potenciales Postsinápticos Excitadores , Guanilato-Quinasas/biosíntesis , Guanilato-Quinasas/genética , Masculino , Proteínas de la Membrana/biosíntesis , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células Piramidales/fisiología , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Transmisión Sináptica
10.
J Neurochem ; 142(5): 686-699, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28628214

RESUMEN

It has been established that voltage-gated proton channels (VSOP/Hv1), encoded by Hvcn1, support reactive oxygen species (ROS) production in phagocytic activities of neutrophils (El Chemaly et al. ) and antibody production in B lymphocytes (Capasso et al. ). VSOP/Hv1 is a potential therapeutic target for brain ischemia, since Hvcn1 deficiency reduces microglial ROS production and protects brain from neuronal damage (Wu et al. ). In the present study, we report that VSOP/Hv1 has paradoxical suppressive role in ROS production in microglia. Extracellular ROS production was lower in neutrophils of Hvcn1-/- mice than WT mice as reported. In contrast, it was drastically enhanced in isolated Hvcn1-/- microglia as compared with cells from WT mice. Actin dynamics was altered in Hvcn1-/- microglia and intracellular distribution of cytosolic NADPH oxidase subunit, p67, was changed. When expression levels of oxidative stress responsive antioxidant genes were compared between WT and Hvcn1-/- in cerebral cortex at different ages of animals, they were slightly decreased in Hvcn1-/- mice at younger stage (1 day, 5 days, 3 weeks old), but drastically increased at aged stage (6 months old), suggesting that the regulation of microglial ROS production by VSOP/Hv1 is age-dependent. We also performed brain ischemic stroke experiments and found that the neuroprotective effect of VSOP/Hv1deficiency on infarct volume depended on the age of animals. Taken together, regulation of ROS production by VSOP/Hv1 is more complex than previously thought and significance of VSOP/Hv1 in microglial ROS production depends on age.


Asunto(s)
Isquemia Encefálica/metabolismo , Encéfalo/metabolismo , Canales Iónicos/fisiología , Microglía/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Isquemia Encefálica/prevención & control , Células Cultivadas , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Ratones Noqueados , Ratones Transgénicos , Neutrófilos/metabolismo , Estrés Oxidativo/fisiología
11.
J Neurosci ; 35(2): 843-52, 2015 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-25589776

RESUMEN

Simple and regular anatomical structure is a hallmark of the cerebellar cortex. Parasagittally arrayed alternate expression of aldolase C/zebrin II in Purkinje cells (PCs) has been extensively studied, but surprisingly little is known about its functional significance. Here we found a precise structure-function relationship between aldolase C expression and synchrony of PC complex spike activities that reflect climbing fiber inputs to PCs. We performed two-photon calcium imaging in transgenic mice in which aldolase C compartments can be visualized in vivo, and identified highly synchronous complex spike activities among aldolase C-positive or aldolase C-negative PCs, but not across these populations. The boundary of aldolase C compartments corresponded to that of complex spike synchrony at single-cell resolution. Sensory stimulation evoked aldolase C compartment-specific complex spike responses and synchrony. This result further revealed the structure-function segregation. In awake animals, complex spike synchrony both within and between PC populations across the aldolase C boundary were enhanced in response to sensory stimuli, in a way that two functionally distinct PC ensembles are coactivated. These results suggest that PC populations characterized by aldolase C expression precisely represent distinct functional units of the cerebellar cortex, and these functional units can cooperate to process sensory information in awake animals.


Asunto(s)
Señalización del Calcio , Fructosa-Bifosfato Aldolasa/metabolismo , Células de Purkinje/metabolismo , Animales , Fructosa-Bifosfato Aldolasa/genética , Ratones , Ratones Endogámicos C57BL , Especificidad de Órganos
12.
J Cell Sci ; 127(Pt 24): 5204-17, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25380823

RESUMEN

The ubiquitin-proteasome and autophagy-lysosome pathways are the two major routes of protein and organelle clearance. The role of the proteasome pathway in mammalian muscle has not been examined in vivo. In this study, we report that the muscle-specific deletion of a crucial proteasomal gene, Rpt3 (also known as Psmc4), resulted in profound muscle growth defects and a decrease in force production in mice. Specifically, developing muscles in conditional Rpt3-knockout animals showed dysregulated proteasomal activity. The autophagy pathway was upregulated, but the process of autophagosome formation was impaired. A microscopic analysis revealed the accumulation of basophilic inclusions and disorganization of the sarcomeres in young adult mice. Our results suggest that appropriate proteasomal activity is important for muscle growth and for maintaining myofiber integrity in collaboration with autophagy pathways. The deletion of a component of the proteasome complex contributed to myofiber degeneration and weakness in muscle disorders that are characterized by the accumulation of abnormal inclusions.


Asunto(s)
Desarrollo de Músculos , Músculo Esquelético/crecimiento & desarrollo , Músculo Esquelético/patología , Complejo de la Endopetidasa Proteasomal/metabolismo , Agregado de Proteínas , Animales , Autofagia/efectos de los fármacos , Fenómenos Biomecánicos/efectos de los fármacos , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/metabolismo , Distrofina/metabolismo , Inmunohistoquímica , Ratones Noqueados , Desarrollo de Músculos/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/enzimología , Fenotipo , Inhibidores de Proteasoma/farmacología , Agregado de Proteínas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Transcripción Genética/efectos de los fármacos , Ubiquitina/metabolismo
13.
Eur J Immunol ; 45(5): 1512-23, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25652366

RESUMEN

Ras GTPase-activating proteins negatively regulate the Ras/Erk signaling pathway, thereby playing crucial roles in the proliferation, function, and development of various types of cells. In this study, we identified a novel Ras GTPase-activating proteins protein, RASAL3, which is predominantly expressed in cells of hematopoietic lineages, including NKT, B, and T cells. We established systemic RASAL3-deficient mice, and the mice exhibited a severe decrease in NKT cells in the liver at 8 weeks of age. The treatment of RASAL3-deficient mice with α-GalCer, a specific agonist for NKT cells, induced liver damage, but the level was less severe than that in RASAL3-competent mice, and the attenuated liver damage was accompanied by a reduced production of interleukin-4 and interferon-γ from NKT cells. RASAL3-deficient NKT cells treated with α-GalCer in vitro presented augmented Erk phosphorylation, suggesting that there is dysregulated Ras signaling in the NKT cells of RASAL3-deficient mice. Taken together, these results suggest that RASAL3 plays an important role in the expansion and functions of NKT cells in the liver by negatively regulating Ras/Erk signaling, and might be a therapeutic target for NKT-associated diseases.


Asunto(s)
Células T Asesinas Naturales/inmunología , Proteínas Activadoras de ras GTPasa/inmunología , Animales , Linfocitos B/inmunología , Linfocitos B/metabolismo , Línea Celular Tumoral , Galactosilceramidas/administración & dosificación , Galactosilceramidas/inmunología , Técnicas de Silenciamiento del Gen , Humanos , Interferón gamma/biosíntesis , Interleucina-4/biosíntesis , Células Jurkat , Hígado/inmunología , Hígado/lesiones , Hígado/metabolismo , Antígeno-1 Asociado a Función de Linfocito/metabolismo , Sistema de Señalización de MAP Quinasas/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células T Asesinas Naturales/citología , Células T Asesinas Naturales/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores CXCR/metabolismo , Receptores CXCR6 , Transducción de Señal/inmunología , Linfocitos T/inmunología , Linfocitos T/metabolismo , Proteínas Activadoras de ras GTPasa/deficiencia , Proteínas Activadoras de ras GTPasa/genética
14.
Artículo en Inglés | MEDLINE | ID: mdl-27477458

RESUMEN

Phospholipase D4 (PLD4) is expressed in activated microglia that transiently appear in white matter during postnatal brain development. Previous knockdown experiments using cultured microglia showed PLD4 involvement in phagocytosis and proliferation. To elucidate the role of PLD4 in vivo, PLD4-deficient mice were generated and the cerebella were examined at postnatal day 5 (P5) and P7, when PLD4 expression is highest in microglia. Wild type microglia showed strong immunoreactivity for microglial marker CD68 at P5, whereas CD68 signals were weak in PLD4-deficient microglia, suggesting that loss of PLD4 affects microglial activation. At P5 and P7, immunostaining for anti-myelin basic protein (MBP) antibody indicated a mild but significant delay in myelination in PLD4-deficient cerebellum. Similar change was also observed in the corpus callosum at P7. However, this difference was not apparent at P10, suggesting that microglial PLD4-deficiency primarily influences the early myelination stage. Thus, microglia may have a transient role in myelination via a PLD4-related mechanism during development.


Asunto(s)
Encéfalo/embriología , Glicoproteínas de Membrana/deficiencia , Microglía/enzimología , Vaina de Mielina/metabolismo , Animales , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Astrocitos/metabolismo , Cerebelo/citología , Cuerpo Calloso/metabolismo , Exonucleasas , Glicoproteínas de Membrana/metabolismo , Ratones , Neuronas/metabolismo , Células de Purkinje/metabolismo
15.
Eur J Neurosci ; 42(9): 2678-89, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26342201

RESUMEN

Arginine vasopressin (AVP), a major neuropeptide in the suprachiasmatic nucleus (SCN), is postulated to mediate the output of the circadian oscillation. Mice carrying a reporter gene of AVP transcription (AVP(ELuc)) were produced by knocking-in a cDNA of Emerald-luciferase (ELuc) in the translational initiation site. Homozygous mice did not survive beyond postnatal day 7. Using the heterozygous (AVP(ELuc/+)) mice, a bioluminescence reporter system was developed that enabled to monitor AVP transcription through AVP-ELuc measurement in real time for more than 10 cycles in the cultured brain slice. AVP(ELuc/+) mice showed circadian behaviour rhythms and light responsiveness indistinguishable from those of the wild-type. Robust circadian rhythms in AVP-ELuc were detected in the cultured SCN slice at a single cell as well as tissue levels. The circadian rhythm of the whole SCN slice was stable, with the peak at the mid-light phase of a light-dark cycle, while that of a single cell was more variable. By comparison, rhythmicity in the paraventricular nucleus and supraoptic nucleus in the hypothalamus was unstable and damped rapidly. Spatiotemporal profiles of AVP expression at the pixel level revealed significant circadian rhythms in the entire area of AVP-positive cells in the SCN, and at least two clusters that showed different circadian oscillations. Contour analysis of bioluminescence intensity in a cell-like region demonstrated the radiation area was almost identical to the cell size. This newly developed reporter system for AVP gene expression is a useful tool for the study of circadian rhythms.


Asunto(s)
Arginina Vasopresina/genética , Ritmo Circadiano/genética , Neuronas/metabolismo , Núcleo Supraquiasmático/metabolismo , Transcripción Genética , Animales , Células Cultivadas , Femenino , Técnicas de Sustitución del Gen , Genes Reporteros , Mediciones Luminiscentes , Masculino , Ratones , Ratones Transgénicos
16.
Proc Natl Acad Sci U S A ; 109(30): 12195-200, 2012 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-22783023

RESUMEN

The endocannabinoid 2-arachidonoylglycerol (2-AG) mediates retrograde synaptic suppression. Although the mechanisms of 2-AG production are well characterized, how 2-AG is degraded is less clearly understood. Here we found that expression of the 2-AG hydrolyzing enzyme monoacylglycerol lipase (MGL) was highly heterogeneous in the cerebellum, being rich within parallel fiber (PF) terminals, weak in Bergman glia (BG), and absent in other synaptic terminals. Despite this highly selective MGL expression pattern, 2-AG-mediated retrograde suppression was significantly prolonged at not only PF-Purkinje cell (PC) synapses but also climbing fiber-PC synapses in granule cell-specific MGL knockout (MGL-KO) mice whose cerebellar MGL expression was confined to the BG. Virus-mediated expression of MGL into the BG of global MGL-KO mice significantly shortened 2-AG-mediated retrograde suppression at PF-PC synapses. Furthermore, contribution of MGL to termination of 2-AG signaling depended on the distance from MGL-rich PFs to inhibitory synaptic terminals. Thus, 2-AG is degraded in a synapse-type independent manner by MGL present in PFs and the BG. The results of the present study strongly suggest that MGL regulates 2-AG signaling rather broadly within a certain range of neural tissue, although MGL expression is heterogeneous and limited to a subset of nerve terminals and astrocytes.


Asunto(s)
Ácidos Araquidónicos/metabolismo , Moduladores de Receptores de Cannabinoides/metabolismo , Endocannabinoides , Glicéridos/metabolismo , Monoacilglicerol Lipasas/metabolismo , Proteolisis , Transducción de Señal/fisiología , Transmisión Sináptica/fisiología , Análisis de Varianza , Animales , Calcio/metabolismo , Clonación Molecular , Cartilla de ADN/genética , Potenciales Postsinápticos Excitadores/fisiología , Inmunohistoquímica , Ratones , Ratones Noqueados , Monoacilglicerol Lipasas/genética , Neuroglía/metabolismo , Reacción en Cadena de la Polimerasa , Células de Purkinje/metabolismo
17.
J Neurosci ; 33(8): 3588-601, 2013 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-23426686

RESUMEN

Endocannabinoids are known to mediate retrograde suppression of synaptic transmission, modulate synaptic plasticity, and influence learning and memory. The 2-arachidonoylglycerol (2-AG) produced by diacylglycerol lipase α (DGLα) is regarded as the major endocannabinoid that causes retrograde synaptic suppression. To determine how 2-AG signaling influences learning and memory, we subjected DGLα knock-out mice to two learning tasks. We tested the mice using habituation and odor-guided transverse patterning tasks that are known to involve the dentate gyrus and the CA1, respectively, of the hippocampus. We found that DGLα knock-out mice showed significantly faster habituation to an odor and a new environment than wild-type littermates with normal performance in the transverse patterning task. In freely moving animals, long-term potentiation (LTP) induced by theta burst stimulation was significantly larger at perforant path-granule cell synapses in the dentate gyrus of DGLα knock-out mice. Importantly, prior induction of synaptic potentiation at this synapse caused a significant retardation of habituation in DGLα knock-out but not in wild-type littermates. The excitability of granule cells became higher in DGLα knock-out mice after they generated action potentials. Since no differences were found in intrinsic membrane properties and responses to odor stimuli in granule cells, the elevated excitability is considered to result from enhanced activity of an excitatory recurrent network composed of granule cells and mossy cells. These results suggest that retrograde 2-AG signaling negatively regulates habituation by suppressing excitatory recurrent network activity and reducing LTP in the dentate gyrus.


Asunto(s)
Ácidos Araquidónicos/fisiología , Giro Dentado/fisiología , Endocannabinoides/fisiología , Potenciales Postsinápticos Excitadores/fisiología , Glicéridos/fisiología , Habituación Psicofisiológica/fisiología , Potenciación a Largo Plazo/fisiología , Red Nerviosa/fisiología , Inhibición Neural/fisiología , Animales , Aprendizaje por Asociación/fisiología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Tiempo de Reacción/fisiología , Prevención Secundaria
18.
J Biol Chem ; 288(48): 34906-19, 2013 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-24136198

RESUMEN

Syntaxin-1A is a t-SNARE that is involved in vesicle docking and vesicle fusion; it is important in presynaptic exocytosis in neurons because it interacts with many regulatory proteins. Previously, we found the following: 1) that autophosphorylated Ca(2+)/calmodulin-dependent protein kinase II (CaMKII), an important modulator of neural plasticity, interacts with syntaxin-1A to regulate exocytosis, and 2) that a syntaxin missense mutation (R151G) attenuated this interaction. To determine more precisely the physiological importance of this interaction between CaMKII and syntaxin, we generated mice with a knock-in (KI) syntaxin-1A (R151G) mutation. Complexin is a molecular clamp involved in exocytosis, and in the KI mice, recruitment of complexin to the SNARE complex was reduced because of an abnormal CaMKII/syntaxin interaction. Nevertheless, SNARE complex formation was not inhibited, and consequently, basal neurotransmission was normal. However, the KI mice did exhibit more enhanced presynaptic plasticity than wild-type littermates; this enhanced plasticity could be associated with synaptic response than did wild-type littermates; this pronounced response included several behavioral abnormalities. Notably, the R151G phenotypes were generally similar to previously reported CaMKII mutant phenotypes. Additionally, synaptic recycling in these KI mice was delayed, and the density of synaptic vesicles was reduced. Taken together, our results indicated that this single point mutation in syntaxin-1A causes abnormal regulation of neuronal plasticity and vesicle recycling and that the affected syntaxin-1A/CaMKII interaction is essential for normal brain and synaptic functions in vivo.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Exocitosis/genética , Plasticidad Neuronal/fisiología , Mutación Puntual/genética , Sintaxina 1/genética , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/fisiología , Técnicas de Sustitución del Gen , Hipocampo/metabolismo , Proteínas de la Membrana/genética , Ratones , Plasticidad Neuronal/genética , Neuronas/metabolismo , Neuronas/fisiología , Mapas de Interacción de Proteínas , Transmisión Sináptica/genética , Vesículas Sinápticas/genética , Vesículas Sinápticas/metabolismo , Sintaxina 1/metabolismo
19.
J Neurochem ; 131(1): 53-64, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24802945

RESUMEN

Previous studies have implicated the role of Purkinje cells in motor learning and the underlying mechanisms have also been identified in great detail during the last decades. Here we report that cyclin-dependent kinase 5 (Cdk5)/p35 in Purkinje cell also contributes to synaptic plasticity. We previously showed that p35(-/-) (p35 KO) mice exhibited a subtle abnormality in brain structure and impaired spatial learning and memory. Further behavioral analysis showed that p35 KO mice had a motor coordination defect, suggesting that p35, one of the activators of Cdk5, together with Cdk5 may play an important role in cerebellar motor learning. Therefore, we created Purkinje cell-specific conditional Cdk5/p35 knockout (L7-p35 cKO) mice, analyzed the cerebellar histology and Purkinje cell morphology of these mice, evaluated their performance with balance beam and rota-rod test, and performed electrophysiological recordings to assess long-term synaptic plasticity. Our analyses showed that Purkinje cell-specific deletion of Cdk5/p35 resulted in no changes in Purkinje cell morphology but severely impaired motor coordination. Furthermore, disrupted cerebellar long-term synaptic plasticity was observed at the parallel fiber-Purkinje cell synapse in L7-p35 cKO mice. These results indicate that Cdk5/p35 is required for motor learning and involved in long-term synaptic plasticity.


Asunto(s)
Cerebelo/metabolismo , Plasticidad Neuronal/fisiología , Fosfotransferasas/deficiencia , Desempeño Psicomotor/fisiología , Animales , Cerebelo/patología , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Fosfotransferasas/genética
20.
Proc Natl Acad Sci U S A ; 108(36): 14885-9, 2011 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-21873234

RESUMEN

CD8 T cells play a critical role in protection against viral infections. During effector differentiation, CD8 T cells dramatically change chromatin structure and cellular metabolism, but how energy production increases in response to these epigenetic changes is unknown. We found that loss of basic leucine zipper transcription factor, ATF-like (BATF) inhibited effector CD8 T-cell differentiation. At the late effector stage, BATF was induced by IL-12 and required for IL-12-mediated histone acetylation and survival of effector T cells. BATF, together with c-Jun, transcriptionally inhibited expression of the nicotinamide adenine dinucleotide (NAD(+))-dependent deacetylase Sirt1, resulting in increased histone acetylation of the T-bet locus and increased cellular NAD(+), which increased ATP production. In turn, high levels of T-bet expression and ATP production promoted effector differentiation and cell survival. These results suggest that BATF promotes effector CD8 T-cell differentiation by regulating both epigenetic remodeling and energy metabolism through Sirt1 expression.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Linfocitos T CD8-positivos/metabolismo , Epigénesis Genética/fisiología , Regulación Enzimológica de la Expresión Génica/fisiología , Sitios Genéticos/fisiología , Sirtuina 1/biosíntesis , Acetilación , Adenosina Trifosfato/genética , Adenosina Trifosfato/metabolismo , Animales , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Linfocitos T CD8-positivos/citología , Histonas/genética , Histonas/metabolismo , Interleucina-12/genética , Interleucina-12/metabolismo , Ratones , Ratones Noqueados , NAD/genética , NAD/metabolismo , Multimerización de Proteína/fisiología , Sirtuina 1/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA