Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Hum Brain Mapp ; 44(6): 2294-2306, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36715247

RESUMEN

Multiple sclerosis (MS) is a neurological condition characterized by severe structural brain damage and by functional reorganization of the main brain networks that try to limit the clinical consequences of structural burden. Resting-state (RS) functional connectivity (FC) abnormalities found in this condition were shown to be variable across different MS phases, according to the severity of clinical manifestations. The article describes a system exploiting machine learning on RS FC matrices to discriminate different MS phenotypes and to identify relevant functional connections for MS stage characterization. To this end, the system exploits some mathematical properties of covariance-based RS FC representation, which can be described by a Riemannian manifold. The classification performance of the proposed framework was significantly above the chance level for all MS phenotypes. Moreover, the proposed system was successful in identifying relevant RS FC alterations contributing to an accurate phenotype classification.


Asunto(s)
Esclerosis Múltiple , Humanos , Esclerosis Múltiple/diagnóstico por imagen , Mapeo Encefálico , Inteligencia Artificial , Imagen por Resonancia Magnética , Vías Nerviosas/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA