Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.377
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nature ; 593(7859): 418-423, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33727703

RESUMEN

The COVID-19 pandemic is the third outbreak this century of a zoonotic disease caused by a coronavirus, following the emergence of severe acute respiratory syndrome (SARS) in 20031 and Middle East respiratory syndrome (MERS) in 20122. Treatment options for coronaviruses are limited. Here we show that clofazimine-an anti-leprosy drug with a favourable safety profile3-possesses inhibitory activity against several coronaviruses, and can antagonize the replication of SARS-CoV-2 and MERS-CoV in a range of in vitro systems. We found that this molecule, which has been approved by the US Food and Drug Administration, inhibits cell fusion mediated by the viral spike glycoprotein, as well as activity of the viral helicase. Prophylactic or therapeutic administration of clofazimine in a hamster model of SARS-CoV-2 pathogenesis led to reduced viral loads in the lung and viral shedding in faeces, and also alleviated the inflammation associated with viral infection. Combinations of clofazimine and remdesivir exhibited antiviral synergy in vitro and in vivo, and restricted viral shedding from the upper respiratory tract. Clofazimine, which is orally bioavailable and comparatively cheap to manufacture, is an attractive clinical candidate for the treatment of outpatients and-when combined with remdesivir-in therapy for hospitalized patients with COVID-19, particularly in contexts in which costs are an important factor or specialized medical facilities are limited. Our data provide evidence that clofazimine may have a role in the control of the current pandemic of COVID-19 and-possibly more importantly-in dealing with coronavirus diseases that may emerge in the future.


Asunto(s)
Antivirales/farmacología , Clofazimina/farmacología , Coronavirus/clasificación , Coronavirus/efectos de los fármacos , SARS-CoV-2/efectos de los fármacos , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/farmacología , Adenosina Monofosfato/uso terapéutico , Alanina/análogos & derivados , Alanina/farmacología , Alanina/uso terapéutico , Animales , Antiinflamatorios/farmacocinética , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antivirales/farmacocinética , Antivirales/uso terapéutico , Disponibilidad Biológica , Fusión Celular , Línea Celular , Clofazimina/farmacocinética , Clofazimina/uso terapéutico , Coronavirus/crecimiento & desarrollo , Coronavirus/patogenicidad , Cricetinae , ADN Helicasas/antagonistas & inhibidores , Sinergismo Farmacológico , Femenino , Humanos , Estadios del Ciclo de Vida/efectos de los fármacos , Masculino , Mesocricetus , Profilaxis Pre-Exposición , SARS-CoV-2/crecimiento & desarrollo , Especificidad de la Especie , Glicoproteína de la Espiga del Coronavirus/antagonistas & inhibidores , Transcripción Genética/efectos de los fármacos , Transcripción Genética/genética
2.
PLoS Pathog ; 20(4): e1012146, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38669242

RESUMEN

Apoptosis is a critical host antiviral defense mechanism. But many viruses have evolved multiple strategies to manipulate apoptosis and escape host antiviral immune responses. Herpesvirus infection regulated apoptosis; however, the underlying molecular mechanisms have not yet been fully elucidated. Hence, the present study aimed to study the relationship between herpesvirus infection and apoptosis in vitro and in vivo using the pseudorabies virus (PRV) as the model virus. We found that mitochondria-dependent apoptosis was induced by PRV gM, a late protein encoded by PRV UL10, a virulence-related gene involved in enhancing PRV pathogenicity. Mechanistically, gM competitively combines with BCL-XL to disrupt the BCL-XL-BAK complex, resulting in BCL-2-antagonistic killer (BAK) oligomerization and BCL-2-associated X (BAX) activation, which destroys the mitochondrial membrane potential and activates caspase-3/7 to trigger apoptosis. Interestingly, similar apoptotic mechanisms were observed in other herpesviruses (Herpes Simplex Virus-1 [HSV-1], human cytomegalovirus [HCMV], Equine herpesvirus-1 [EHV-1], and varicella-zoster virus [VZV]) driven by PRV gM homologs. Compared with their parental viruses, the pathogenicity of PRV-ΔUL10 or HSV-1-ΔUL10 in mice was reduced with lower apoptosis and viral replication, illustrating that UL10 is a key virulence-related gene in PRV and HSV-1. Consistently, caspase-3 deletion also diminished the replication and pathogenicity of PRV and HSV-1 in vitro and in mice, suggesting that caspase-3-mediated apoptosis is closely related to the replication and pathogenicity of PRV and HSV-1. Overall, our findings firstly reveal the mechanism by which PRV gM and its homologs in several herpesviruses regulate apoptosis to enhance the viral replication and pathogenicity, and the relationship between gM-mediated apoptosis and herpesvirus pathogenicity suggests a promising approach for developing attenuated live vaccines and therapy for herpesvirus-related diseases.


Asunto(s)
Apoptosis , Herpesvirus Suido 1 , Mitocondrias , Seudorrabia , Proteínas Virales , Animales , Herpesvirus Suido 1/patogenicidad , Herpesvirus Suido 1/genética , Ratones , Mitocondrias/metabolismo , Mitocondrias/virología , Seudorrabia/virología , Proteínas Virales/metabolismo , Proteínas Virales/genética , Herpesviridae/patogenicidad , Herpesviridae/genética , Replicación Viral/fisiología , Humanos , Ratones Endogámicos BALB C , Virulencia
3.
PLoS Pathog ; 19(9): e1011619, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37708148

RESUMEN

The host cell membrane-associated RING-CH 8 protein (MARCH8), a member of the E3 ubiquitin ligase family, regulates intracellular turnover of many transmembrane proteins and shows potent antiviral activities. Generally, 2 antiviral modes are performed by MARCH8. On the one hand, MARCH8 catalyzes viral envelope glycoproteins (VEGs) ubiquitination and thus leads to their intracellular degradation, which is the cytoplasmic tail (CT)-dependent (CTD) mode. On the other hand, MARCH8 traps VEGs at some intracellular compartments (such as the trans-Golgi network, TGN) but without inducing their degradation, which is the cytoplasmic tail-independent (CTI) mode, by which MARCH8 hijacks furin, a cellular proprotein convertase, to block VEGs cleavage. In addition, the MARCH8 C-terminal tyrosine-based motif (TBM) 222YxxL225 also plays a key role in its CTI antiviral effects. In contrast to its antiviral potency, MARCH8 is occasionally hijacked by some viruses and bacteria to enhance their invasion, indicating a duplex role of MARCH8 in host pathogenic infections. This review summarizes MARCH8's antiviral roles and how viruses evade its restriction, shedding light on novel antiviral therapeutic avenues.


Asunto(s)
Virosis , Humanos , Antivirales/farmacología , Ligando de CD40 , Proteínas de la Membrana , Tirosina , Proteínas del Envoltorio Viral
4.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35105803

RESUMEN

BRD4 is well known for its role in super-enhancer organization and transcription activation of several prominent oncogenes including c-MYC and BCL2 As such, BRD4 inhibitors are being pursued as promising therapeutics for cancer treatment. However, drug resistance also occurs for BRD4-targeted therapies. Here, we report that BRD4 unexpectedly interacts with the LSD1/NuRD complex and colocalizes with this repressive complex on super-enhancers. Integrative genomic and epigenomic analyses indicate that the BRD4/LSD1/NuRD complex restricts the hyperactivation of a cluster of genes that are functionally linked to drug resistance. Intriguingly, treatment of breast cancer cells with a small-molecule inhibitor of BRD4, JQ1, results in no immediate activation of the drug-resistant genes, but long-time treatment or destabilization of LSD1 by PELI1 decommissions the BRD4/LSD1/NuRD complex, leading to resistance to JQ1 as well as to a broad spectrum of therapeutic compounds. Consistently, PELI1 is up-regulated in breast carcinomas, its level is negatively correlated with that of LSD1, and the expression level of the BRD4/LSD1/NuRD complex-restricted genes is strongly correlated with a worse overall survival of breast cancer patients. Together, our study uncovers a functional duality of BRD4 in super-enhancer organization of transcription activation and repression linking to oncogenesis and chemoresistance, respectively, supporting the pursuit of a combined targeting of BRD4 and PELI1 in effective treatment of breast cancer.


Asunto(s)
Neoplasias de la Mama/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Neoplasias/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Proteínas de Ciclo Celular/genética , Femenino , Histona Demetilasas/genética , Histona Demetilasas/metabolismo , Humanos , Células MCF-7 , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/genética , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Proteínas de Neoplasias/genética , Factores de Transcripción/genética
5.
Plant J ; 113(3): 504-520, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36524729

RESUMEN

Tapping panel dryness (TPD) is a century-old problem that has plagued the natural rubber production of Hevea brasiliensis. TPD may result from self-protective mechanisms of H. brasiliensis in response to stresses such as excessive hormone stimulation and mechanical wounding (bark tapping). It has been hypothesized that TPD impairs rubber biosynthesis; however, the underlying mechanisms remain poorly understood. In the present study, we firstly verified that TPD-affected rubber trees exhibited lower rubber biosynthesis activity and greater rubber molecular weight compared to healthy rubber trees. We then demonstrated that HbFPS1, a key gene of rubber biosynthesis, and its expression products were downregulated in the latex of TPD-affected rubber trees, as revealed by transcriptome sequencing and iTRAQ-based proteome analysis. We further discovered that the farnesyl diphosphate synthase HbFPS1 could be recruited to small rubber particles by HbSRPP1 through protein-protein interactions to catalyze farnesyl diphosphate (FPP) synthesis and facilitate rubber biosynthesis initiation. FPP content in the latex of TPD-affected rubber trees was significantly decreased with the downregulation of HbFPS1, ultimately resulting in abnormal development of rubber particles, decreased rubber biosynthesis activity, and increased rubber molecular weight. Upstream regulator assays indicated that a novel regulator, MYB2-like, may be an important regulator of downregulation of HbFPS1 in the latex of TPD-affected rubber trees. Our findings not only provide new directions for studying the molecular events involved in rubber biosynthesis and TPD syndrome and contribute to rubber management strategies, but also broaden our knowledge of plant isoprenoid metabolism and its regulatory networks.


Asunto(s)
Hevea , Hevea/genética , Hevea/metabolismo , Regulación hacia Abajo , Látex , Regulación de la Expresión Génica de las Plantas/genética
6.
J Am Chem Soc ; 146(8): 5051-5055, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38373353

RESUMEN

The construction of quaternary carbon centers via C-C coupling protocols remains challenging. The coupling of tertiary C(sp3) with secondary or tertiary C(sp3) counterparts has been hindered by pronounced steric clashes and many side reactions. Herein, we have successfully developed a type of bisphosphine ligand iron complex-catalyzed coupling reactions of tertiary alkyl halides with secondary alkyl zinc reagents and efficiently realized the coupling reaction between tertiary C(sp3) and secondary C(sp3) with high selectivity for the initial instance, which provided an efficient method for the construction of quaternary carbon centers with high steric hindrance. The combination of an iron catalyst and directing group of the substrate makes the great challenging transformation possible.

7.
Cancer Sci ; 115(8): 2673-2685, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38801832

RESUMEN

Aberrant signaling in tumor cells induces nonmetabolic functions of some metabolic enzymes in many cellular activities. As a key glycolytic enzyme, the nonmetabolic function of hexokinase 2 (HK2) plays a role in tumor immune evasion. However, whether HK2, dependent of its nonmetabolic activity, plays a role in human pancreatic ductal adenocarcinoma (PDAC) tumorigenesis remains unclear. Here, we demonstrated that HK2 acts as a protein kinase and phosphorylates IκBα at T291 in PDAC cells, activating NF-κB, which enters the nucleus and promotes the expression of downstream targets under hypoxia. HK2 nonmetabolic activity-promoted activation of NF-κB promotes the proliferation, migration, and invasion of PDAC cells. These findings provide new insights into the multifaceted roles of HK2 in tumor development and underscore the potential of targeting HK2 protein kinase activity for PDAC treatment.


Asunto(s)
Carcinoma Ductal Pancreático , Proliferación Celular , Hexoquinasa , Inhibidor NF-kappaB alfa , FN-kappa B , Neoplasias Pancreáticas , Humanos , Hexoquinasa/metabolismo , Hexoquinasa/genética , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/metabolismo , Fosforilación , Línea Celular Tumoral , Inhibidor NF-kappaB alfa/metabolismo , FN-kappa B/metabolismo , Progresión de la Enfermedad , Animales , Movimiento Celular , Ratones , Transducción de Señal , Femenino , Masculino
8.
Br J Cancer ; 131(5): 832-842, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38971951

RESUMEN

IMPORTANCE: Intra-arterial therapies(IATs) are promising options for unresectable hepatocellular carcinoma(HCC). Stratifying the prognostic risk before administering IAT is important for clinical decision-making and for designing future clinical trials. OBJECTIVE: To develop and validate a machine learning(ML)-based decision support model(MLDSM) for recommending IAT modalities for unresectable HCC. DESIGN, SETTING, AND PARTICIPANTS: Between October 2014 and October 2022, a total of 2,959 patients with HCC who underwent initial IATs were enroled retrospectively from 13 tertiary hospitals. These patients were divided into the training cohort (n = 1700), validation cohort (n = 428), and test cohort (n = 200). MAIN OUTCOMES AND MEASURES: Thirty-two clinical variables were input, and five supervised ML algorithms, including eXtreme Gradient Boosting (XGBoost), Categorical Gradient Boosting (CatBoost), Gradient Boosting Decision Tree (GBDT), Light Gradient Boosting Machine (LGBM) and Random Forest (RF), were compared using the areas under the receiver operating characteristic curve (AUC) with the DeLong test. RESULTS: A total of 1856 patients were assigned to the IAT alone Group(I-A), and 1103 patients were assigned to the IAT combination Group(I-C). The 12-month death rates were 31.9% (352/1103) in the I-A group and 50.4% (936/1856) in the I-C group. For the test cohort, in the I-C group, the CatBoost model achieved the best discrimination when 30 variables were input, with an AUC of 0.776 (95% confidence intervals [CI], 0.833-0.868). In the I-A group, the LGBM model achieved the best discrimination when 24 variables were input, with an AUC of 0.776 (95% CI, 0.833-0.868). According to the decision trees, BCLC grade, local therapy, and diameter as top three variables were used to guide clinical decisions between IAT modalities. CONCLUSIONS AND RELEVANCE: The MLDSM can accurately stratify prognostic risk for HCC patients who received IATs, thus helping physicians to make decisions about IAT and providing guidance for surveillance strategies in clinical practice.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Aprendizaje Automático , Humanos , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/patología , Masculino , Femenino , Persona de Mediana Edad , Anciano , Estudios Retrospectivos , Técnicas de Apoyo para la Decisión , Toma de Decisiones Clínicas , Pronóstico , Quimioembolización Terapéutica/métodos
9.
Cancer Immunol Immunother ; 73(9): 182, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38967817

RESUMEN

BACKGROUND: The long-term survival benefit of immune checkpoint inhibitors (ICIs) in neoadjuvant and adjuvant settings is unclear for colorectal cancers (CRC) and gastric cancers (GC) with deficiency of mismatch repair (dMMR) or microsatellite instability-high (MSI-H). METHODS: This retrospective study enrolled patients with dMMR/MSI-H CRC and GC who received at least one dose of neoadjuvant ICIs (neoadjuvant cohort, NAC) or adjuvant ICIs (adjuvant cohort, AC) at 17 centers in China. Patients with stage IV disease were also eligible if all tumor lesions were radically resectable. RESULTS: In NAC (n = 124), objective response rates were 75.7% and 55.4%, respectively, in CRC and GC, and pathological complete response rates were 73.4% and 47.7%, respectively. The 3-year disease-free survival (DFS) and overall survival (OS) rates were 96% (95%CI 90-100%) and 100% for CRC (median follow-up [mFU] 29.4 months), respectively, and were 84% (72-96%) and 93% (85-100%) for GC (mFU 33.0 months), respectively. In AC (n = 48), the 3-year DFS and OS rates were 94% (84-100%) and 100% for CRC (mFU 35.5 months), respectively, and were 92% (82-100%) and 96% (88-100%) for GC (mFU 40.4 months), respectively. Among the seven patients with distant relapse, four received dual blockade of PD1 and CTLA4 combined with or without chemo- and targeted drugs, with three partial response and one progressive disease. CONCLUSION: With a relatively long follow-up, this study demonstrated that neoadjuvant and adjuvant ICIs might be both associated with promising DFS and OS in dMMR/MSI-H CRC and GC, which should be confirmed in further randomized clinical trials.


Asunto(s)
Neoplasias Colorrectales , Inhibidores de Puntos de Control Inmunológico , Inestabilidad de Microsatélites , Terapia Neoadyuvante , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/mortalidad , Neoplasias Gástricas/patología , Femenino , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Masculino , Terapia Neoadyuvante/métodos , Persona de Mediana Edad , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/mortalidad , Neoplasias Colorrectales/patología , Estudios Retrospectivos , Anciano , Adulto , Reparación de la Incompatibilidad de ADN , Quimioterapia Adyuvante/métodos , Estudios de Seguimiento
10.
J Pharmacol Exp Ther ; 391(1): 64-81, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39060164

RESUMEN

It has been proposed that inhaled E-prostanoid 4 (EP4)-receptor agonists could represent a new class of bronchodilators for the treatment of asthma that are as effective as ß 2-adrenoceptor agonists. However, the genomic impact of such drugs is unknown despite being potentially deleterious to respiratory health. Herein, we used mRNA-seq to compare the transcriptomic responses produced by 2-[3-[(1R,2S,3R)-3-hydroxy-2-[(E,3S)-3-hydroxy-5-[2-(methoxymethyl)phenyl]pent-1-enyl]-5-oxo-cyclopentyl]sulphanylpropylsulphanyl] acetic acid (ONO-AE1-329; an EP4-receptor agonist) and vilanterol (a ß 2-adrenoceptor agonist) in BEAS-2B human airway epithelial cells. We also determined if an increase in cAMP mediated by different G protein-coupled receptors (GPCRs) promoted distinct transcriptional signatures by expanding this inquiry to include the adenosine A2B- and I-prostanoid receptor agonists, 2-[[6-amino-3,5-dicyano-4-[4-(cyclopropylmethoxy)phenyl]-2-pyridinyl]thio]-acetamide (Bay60-6583) and taprostene, respectively. Maximally-effective concentrations of ONO-AE1-329 and vilanterol significantly regulated (q ≤ 0.05; ≥1.5-/≤0.67-fold) 232 and 320 genes, respectively of which 217 were shared. Spearman analysis showed these gene expression changes to be highly rank order correlated, indicating that the functional overlap between the two interventions should be considerable. Unexpectedly, the genomic effects of ONO-AE1-329, vilanterol, Bay 60-6583, and taprostene were also highly rank order correlated. This finding suggests that cAMP generated by any GPCR would initiate the same transcriptional program. Nevertheless, relative to vilanterol, ONO-AE1-329 typically behaved as a partial agonist that varied across transcripts. These data indicate that each ONO-AE1-329-regulated gene differs in sensitivity to cAMP and is defined by a unique receptor occupancy-response relationship. Moreover, if this relatively modest genomic response in BEAS-2B cells is retained in vivo, then inhaled EP4-receptor agonists could represent an alternative, and possibly safer, class of bronchodilators. SIGNIFICANCE STATEMENT: The genomic consequences of ß 2-adrenoceptor agonists in asthma are often overlooked despite being potentially harmful to lung health. We determined that ONO-AE1-329, an EP4-receptor agonist and effective bronchodilator, produced gene expression changes in BEAS-2B cells that were typically modest relative to the ß 2-adrenoceptor agonist vilanterol. Furthermore, ONO-AE1-329 behaved as a partial agonist that varied across transcripts. If this genomic activity is reproduced in vivo, then EP4-receptor agonists could represent an alternative, and possibly safer, class of bronchodilators.


Asunto(s)
Agonistas de Receptores Adrenérgicos beta 2 , Bronquios , AMP Cíclico , Células Epiteliales , Subtipo EP4 de Receptores de Prostaglandina E , Humanos , AMP Cíclico/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Bronquios/citología , Bronquios/efectos de los fármacos , Bronquios/metabolismo , Subtipo EP4 de Receptores de Prostaglandina E/agonistas , Subtipo EP4 de Receptores de Prostaglandina E/genética , Subtipo EP4 de Receptores de Prostaglandina E/metabolismo , Agonistas de Receptores Adrenérgicos beta 2/farmacología , Línea Celular , Clorobencenos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Genómica/métodos , Alcoholes Bencílicos
11.
J Virol ; 97(2): e0194722, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36656013

RESUMEN

Members of deltacoronavirus (DCoV) have mostly been identified in diverse avian species as natural reservoirs, though the porcine DCoV (PDCoV) is a major swine enteropathogenic virus with global spread. The important role of aminopeptidase N (APN) orthologues from various mammalian and avian species in PDCoV cellular entry and interspecies transmission has been revealed recently. In this study, comparative analysis indicated that three avian DCoVs, bulbul DCoV HKU11, munia DCoV HKU13, and sparrow DCoV HKU17 (Chinese strain), and PDCoV in the subgenera Buldecovirus are grouped together at whole-genome levels; however, the spike (S) glycoprotein and its S1 subunit of HKU17 are more closely related to night heron DCoV HKU19 in Herdecovirus. Nevertheless, the S1 protein of HKU11, HKU13, or HKU17 bound to or interacted with chicken APN (chAPN) or porcine APN (pAPN) by flow cytometry analysis of cell surface expression of APN and by coimmunoprecipitation in APN-overexpressing cells. Expression of chAPN or pAPN allowed entry of pseudotyped lentiviruses with the S proteins from HKU11, HKU13 and HKU17 into nonsusceptible cells and natural avian and porcine cells, which could be inhibited by the antibody against APN or anti-PDCoV-S1. APN knockdown by siRNA or knockout by CRISPR/Cas9 in chicken or swine cell lines significantly or almost completely blocked infection of these pseudoviruses. Hence, we demonstrate that HKU11, HKU13, and HKU17 with divergent S genes likely engage chAPN or pAPN to enter the cells, suggesting a potential interspecies transmission from wild birds to poultry and from birds to mammals by certain avian DCoVs. IMPORTANCE The receptor usage of avian deltacoronaviruses (DCoVs) has not been investigated thus far, though porcine deltacoronavirus (PDCoV) has been shown to utilize aminopeptidase N (APN) as a cell receptor. We report here that chicken or porcine APN also mediates cellular entry by three avian DCoV (HKU11, HKU13, and HKU17) spike pseudoviruses, and the S1 subunit of three avian DCoVs binds to APN in vitro and in the surface of avian and porcine cells. The results fill the gaps in knowledge about the avian DCoV receptor and elucidate important insights for the monitoring and prevention of potential interspecies transmission of certain avian DCoVs. In view of the diversity of DCoVs, whether this coronavirus genus will cause novel virus to emerge in other mammals from birds, are worthy of further surveillance and investigation.


Asunto(s)
Antígenos CD13 , Deltacoronavirus , Glicoproteína de la Espiga del Coronavirus , Internalización del Virus , Animales , Antígenos CD13/genética , Antígenos CD13/metabolismo , Pollos/metabolismo , Infecciones por Coronavirus , Deltacoronavirus/metabolismo , Porcinos , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Lentivirus/genética , Lentivirus/metabolismo
12.
J Transl Med ; 22(1): 6, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167440

RESUMEN

BACKGROUND: Tandem C2 domains, nuclear (TC2N) is a C2 domain-containing protein that belongs to the carboxyl-terminal type (C-type) tandem C2 protein family, and acts as an oncogenic driver in several cancers. Previously, we preliminarily reported that TC2N mediates the PI3K-Akt signaling pathway to inhibit tumor growth of breast cancer (BC) cells. Beyond that, its precise biological functions and detailed molecular mechanisms in BC development and progression are not fully understood. METHODS: Tumor tissues of 212 BC patients were subjected to tissue microarray and further assessed the associations of TC2N expression with pathological parameters and FASN expression. The protein levels of TC2N and FASN in cell lines and tumor specimens were monitored by qRT-PCR, WB, immunofluorescence and immunohistochemistry. In vitro cell assays, in vivo nude mice model was used to assess the effect of TC2N ectopic expression on tumor metastasis and stemness of breast cancer cells. The downstream signaling pathway or target molecule of TC2N was mined using a combination of transcriptomics, proteomics and lipidomics, and the underlying mechanism was explored by WB and co-IP assays. RESULTS: Here, we found that the expression of TC2N remarkedly silenced in metastatic and poorly differentiated tumors. Function-wide, TC2N strongly inhibits tumor metastasis and stem-like properties of BC via inhibition of fatty acid synthesis. Mechanism-wise, TC2N blocks neddylated PTEN-mediated FASN stabilization by a dual mechanism. The C2B domain is crucial for nuclear localization of TC2N, further consolidating the TRIM21-mediated ubiquitylation and degradation of FASN by competing with neddylated PTEN for binding to FASN in nucleus. On the other hand, cytoplasmic TC2N interacts with import proteins, thereby restraining nuclear import of PTEN to decrease neddylated PTEN level. CONCLUSIONS: Altogether, we demonstrate a previously unidentified role and mechanism of TC2N in regulation of lipid metabolism and PTEN neddylation, providing a potential therapeutic target for anti-cancer.


Asunto(s)
Neoplasias de la Mama , Animales , Ratones , Humanos , Femenino , Neoplasias de la Mama/patología , Ratones Desnudos , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal , Ácidos Grasos , Línea Celular Tumoral , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfohidrolasa PTEN/genética , Proliferación Celular , Regulación Neoplásica de la Expresión Génica
13.
J Med Virol ; 96(3): e29516, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38469895

RESUMEN

The serum chemokine C-X-C motif ligand-10 (CXCL10) and its unique receptor (CXCR3) may predict the prognosis of patients with chronic hepatitis B (CHB) treated with tenofovir disoproxil fumarate (TDF). Nevertheless, there are few reports on the profile of CXCL10 and CXCR3 and their clinical application in HBeAg (+) CHB patients during TDF antiviral therapy. CXCL10 and CXCR3 were determined in 118 CHB patients naively treated with TDF for at least 96 weeks at baseline and at treatment weeks 12 and 24. In addition, gene set enrichment analysis was used to examine the associated dataset from Gene Expression Omnibus and explore the gene sets associated with HBeAg seroconversion (SC). The change of CXCL10 (ΔCXCL10, baseline to 48-week TDF treatment) and CXCR3 (ΔCXCR3) is closely related to the possibility of HBeAg SC of CHB patients under TDF treatment. Immunohistochemical analysis of CXCL10/CXCR3 protein in liver tissue shows that there is a significant difference between paired liver biopsy samples taken before and after 96 weeks of successful TDF treatment of CHB patients (11 pairs) but no significance for unsuccessful TDF treatment (14 pairs). Multivariate Cox analysis suggests that the ΔCXCL10 is an independent predictive indicator of HBeAg SC, and the area under the receiver operating characteristic curve of the ΔCXCL10 in CHB patients is 0.8867 (p < 0.0001). Our results suggest that a lower descending CXCL10 level is associated with an increased probability of HBeAg SC of CHB patients during TDF therapy. Moreover, liver tissue CXCL10 might be involved in the immunological process of HBeAg SC.


Asunto(s)
Hepatitis B Crónica , Humanos , Tenofovir , Antivirales , Antígenos e de la Hepatitis B , Seroconversión , Resultado del Tratamiento , Virus de la Hepatitis B/genética , ADN Viral , Quimiocina CXCL10
14.
J Med Virol ; 96(2): e29445, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38299743

RESUMEN

Membrane-associated RING-CH (MARCH) family proteins were recently reported to inhibit viral replication through multiple modes. Previous work showed that human MARCH8 blocked Ebola virus (EBOV) glycoprotein (GP) maturation. Our study here demonstrates that human MARCH1 and MARCH2 share a similar pattern to MARCH8 in restricting EBOV GP-pseudotyped viral infection. Human MARCH1 and MARCH2 retain EBOV GP at the trans-Golgi network, reduce its cell surface display, and impair EBOV GP-pseudotyped virions infectivity. Furthermore, we uncover that the host proprotein convertase furin could interact with human MARCH1/2 and EBOV GP intracellularly. Importantly, the furin P domain is verified to be recognized by MARCH1/2/8, which is critical for their blocking activities. Besides, bovine MARCH2 and murine MARCH1 also impair EBOV GP proteolytic processing. Altogether, our findings confirm that MARCH1/2 proteins of different mammalian origins showed a relatively conserved feature in blocking EBOV GP cleavage, which could provide clues for subsequent MARCHs antiviral studies and may facilitate the development of novel strategies to antagonize enveloped virus infection.


Asunto(s)
Ebolavirus , Fiebre Hemorrágica Ebola , Animales , Bovinos , Humanos , Ratones , Línea Celular , Furina/metabolismo , Glicoproteínas , Mamíferos/metabolismo , Proteínas de la Membrana/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Envoltura Viral/metabolismo , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo
15.
J Med Virol ; 96(3): e29503, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38445750

RESUMEN

Enterovirus C116 (EV-C116) is a new member of the enterovirus C group which is closely associated with several infectious diseases. Although sporadic studies have detected EV-C116 in clinical samples worldwide, there is currently limited information available. In this study, two EV-C-positive fecal specimens were detected in apparently healthy children, which harbored low abundance, through meta-transcriptome sequencing. Based on the prototypes of several EV-Cs, two lineages were observed. Lineage 1 included many types that could not cause EV-like cytopathic effect in cell culture. Three genogroups of EV-C116 were divided in the maximum likelihood tree, and the two strains in this study (XZ2 and XZ113) formed two different lineages, suggesting that EV-C116 still diffuses worldwide. Obvious inter-type recombination events were observed in the XZ2 strain, with CVA22 identified as a minor donor. However, another strain (XZ113) underwent different recombination situations, highlighting the importance of recombination in the formation of EV-Cs biodiversity. The EV-C116 strains could propagate in rhabdomyosarcoma cell cultures at low titer; however, EV-like cytopathic effects were not observed. HEp-2, L20B, VERO, and 293T cell lines did not provide an appropriate environment for EV-C116 growth. These results challenge the traditional recognition of the uncultured nature of EV-C116 strains and explain the difficulty of clinical detection.


Asunto(s)
Infecciones por Enterovirus , Enterovirus , Niño , Humanos , Enterovirus/genética , Infecciones por Enterovirus/epidemiología , China/epidemiología , Antígenos Virales , Células HEK293
16.
Opt Express ; 32(7): 12839-12851, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38571095

RESUMEN

In order to achieve the tunable unidirectional reflection amplification in a uniform atomic medium that is of vital importance to design high-quality nonreciprocal photonic devices, we propose a coherent closed three-level Δ-type atomic system by applying a microwave field, and a strong coupling field of linear variation along the x direction to control a probe field. In our scheme, the linearly increased coupling field destroys the spatial symmetry of probe susceptibility and effectively suppresses the reflection of one side; the microwave field constructs closed loop transitions to amplify the probe field and causes phase changes. The numerical simulation indicates that the unidirectional reflection amplification is sensitive to the relative phase ϕ and the coupling detuning Δc. Our results will open a new route toward harnessing optical non-reciprocity, which can provide more convenience and possibilities in the experimental realization.

17.
J Exp Bot ; 75(18): 5955-5970, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-38938017

RESUMEN

Raffinose mitigates plant heat, drought, and cold stresses; however, whether raffinose contributes to plant waterlogging tolerance is unknown. The maize raffinose synthase mutant zmrafs-1 had seedlings that lack raffinose, generated fewer and shorter adventitious roots, and were more sensitive to waterlogging stress, while overexpression of the raffinose synthase gene, ZmRAFS, increased raffinose content, stimulated adventitious root formation, and enhanced waterlogging tolerance of maize seedlings. Transcriptome analysis of null segregant seedlings compared with zmrafs-1, particularly when waterlogged, revealed that the expression of genes related to galactose metabolism and the auxin biosynthetic pathway were up-regulated by raffinose. Additionally, indole-3-acetic acid content was significantly decreased in zmrafs-1 seedlings and increased in ZmRAFS-overexpressing seedlings. Inhibition of the hydrolysis of raffinose by 1-deoxygalactonojirimycin decreased the waterlogging tolerance of maize seedlings, the expression of genes encoding proteins related to auxin transport-related genes, and the indole-3-acetic acid level in the seedlings, indicating that the hydrolysis of raffinose is necessary for maize waterlogging tolerance. These data demonstrate that raffinose catabolism stimulates adventitious root formation via the auxin signaling pathway to enhance maize waterlogging tolerance.


Asunto(s)
Raíces de Plantas , Rafinosa , Zea mays , Zea mays/crecimiento & desarrollo , Zea mays/metabolismo , Zea mays/genética , Zea mays/fisiología , Rafinosa/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Raíces de Plantas/fisiología , Plantones/crecimiento & desarrollo , Plantones/fisiología , Plantones/metabolismo , Plantones/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Agua/metabolismo , Ácidos Indolacéticos/metabolismo , Regulación de la Expresión Génica de las Plantas , Galactosiltransferasas/metabolismo , Galactosiltransferasas/genética
18.
Opt Lett ; 49(5): 1109-1112, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38426950

RESUMEN

Precision measurements of molecular transitions to highly excited states are needed in potential energy surface modeling, state-resolved chemical dynamics studies, and astrophysical spectra analysis. Selective pumping and probing of molecules are often challenging due to the high state density and weak transition moments. We present a mid-infrared and near-infrared double-resonance spectroscopy method for precision measurements. As a demonstration, Doppler-free stepwise two-photon absorption spectra of 13CO2 were recorded by pumping the fundamental transition of R14 (00011)-(00001) and probing the P15 (00041)-(00011) transition enhanced by a high-finesse optical cavity, and the transition frequencies were determined with an accuracy of a few kilohertz.

19.
Microb Cell Fact ; 23(1): 222, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39118114

RESUMEN

BACKGROUND: A cost-effective Escherichia coli expression system has gained popularity for producing virus-like particle (VLP) vaccines. However, the challenge lies in balancing the endotoxin residue and removal costs, as residual endotoxins can cause inflammatory reactions in the body. RESULTS: In this study, porcine parvovirus virus-like particles (PPV-VLPs) were successfully assembled from Decreased Endotoxic BL21 (BL21-DeE), and the effect of structural changes in the lipid A of BL21 on endotoxin activity, immunogenicity, and safety was investigated. The lipopolysaccharide purified from BL21-DeE produced lower IL-6 and TNF-α than that from wild-type BL21 (BL21-W) in both RAW264.7 cells and BALB/c mice. Additionally, mice immunized with PPV-VLP derived form BL21-DeE (BL21-DeE-VLP) showed significantly lower production of inflammatory factors and a smaller increase in body temperature within 3 h than those immunized with VLP from BL21-W (BL21-W-VLP) and endotoxin-removed VLP (ReE-VLP). Moreover, mice in the BL21-DeE-VLP immunized group had similar levels of serum antibodies as those in the BL21-W-VLP group but significantly higher levels than those in the ReE-VLP group. Furthermore, the liver, lungs, and kidneys showed no pathological damage compared with the BL21-W-VLP group. CONCLUSION: Overall, this study proposes a method for producing VLP with high immunogenicity and minimal endotoxin activity without chemical or physical endotoxin removal methods. This method could address the issue of endotoxin residues in the VLP and provide production benefits.


Asunto(s)
Endotoxinas , Escherichia coli , Lípido A , Ratones Endogámicos BALB C , Parvovirus Porcino , Vacunas de Partículas Similares a Virus , Animales , Ratones , Escherichia coli/genética , Escherichia coli/metabolismo , Parvovirus Porcino/inmunología , Parvovirus Porcino/genética , Vacunas de Partículas Similares a Virus/inmunología , Endotoxinas/inmunología , Células RAW 264.7 , Lípido A/inmunología , Lípido A/análogos & derivados , Interleucina-6/inmunología , Factor de Necrosis Tumoral alfa/metabolismo , Femenino , Porcinos , Lipopolisacáridos/inmunología
20.
J Org Chem ; 2024 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-39465977

RESUMEN

Defluorinative cyclization of CF3-alkenes has emerged as a reliable strategy for crafting intricate polycyclic frameworks. In this study, a facile defluorinative bicyclization approach was developed for the construction of 4H,5H-pyrano[3,2-c]chromenes under mild conditions involving a sequence of intramolecular cyclization and intermolecular defluoroheterocyclization. A variety of polysubstituted 4H,5H-pyrano[3,2-c]chromenes featuring C2-fluorine could be synthesized in good yields with excellent tolerance toward various functional groups. Moreover, the introduction of a C-F bond provides additional possibilities for further modification of this skeleton. The product features aggregation-induced emission (AIE) characteristics after simple modification, which is promising for chemical and biomedical imaging.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA