Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
BMC Microbiol ; 24(1): 113, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575881

RESUMEN

BACKGROUND: Cryptosporidium is a highly pathogenic parasite responsible for diarrhea in children worldwide. Here, the epidemiological status and genetic characteristics of Cryptosporidium in children with or without diarrhea were investigated with tracking of potential sources in Wenzhou City, China. METHODS: A total of 1032 children were recruited, 684 of whom had diarrhea and 348 without, from Yuying Children's Hospital in Wenzhou, China. Samples of stool were collected from each participant, followed by extraction of DNA, genotyping, and molecular identification of Cryptosporidium species and subtypes. RESULTS: Twenty-two of the 1032 (2.1%) children were infected with Cryptosporidium spp. with 2.5% (17/684) and 1.4% (5/348) in diarrhoeic and asymptomatic children, respectively. Four Cryptosporidium species were identified, including C. parvum (68.2%; 15/22), C. felis (13.6%; 3/22), C. viatorum (9.1%; 2/22), and C. baileyi (9.1%; 2/22). Two C. parvum subtypes named IIdA19G1 (n = 14) and IInA10 (n = 1), and one each of C. felis (XIXa) and C. viatorum (XVaA3g) subtype was found as well. CONCLUSIONS: This is the first research that identified Cryptosporidium in children of Wenzhou, China, using PCR. Identification of zoonotic C. parvum, C. felis, C. viatorum, and their subtypes indicate potential cross-species transmission of Cryptosporidium between children and animals. Additionally, the presence of C. baileyi in children suggests that this species has a wider host range than previously believed and that it possesses the capacity to infect humans.


Asunto(s)
Criptosporidiosis , Cryptosporidium , Niño , Animales , Humanos , Cryptosporidium/genética , Criptosporidiosis/epidemiología , Criptosporidiosis/parasitología , Diarrea/epidemiología , China/epidemiología , Heces/parasitología , Genotipo , Probabilidad
2.
Artículo en Zh | MEDLINE | ID: mdl-30133242

RESUMEN

Objective: To clone and express the galectin-1 gene of Angiostrongylus cantonensis, and test the agglutination property of its protein. Methods: The three-dimensional structure of galectin-1 was analyzed with Swiss Model. Total RNA was extracted from male worms of A. cantonensis. Primers were designed for galectin-1 based on its coding region (GenBank Accession No. JN133961.1). RT-PCR was performed, and the PCR products were subcloned to pCold Ⅲ plasmid and transduced into Escherichia coli BL21 strain. The recombinant plasmid was extracted from positive clones on LB plate containing 100 µg/ml Kanamycin, and validated with double digestion, PCR identification and sequencing. The confirmed positive clones of E. coli BL21 with the recombinant plasmid were grown in LB medium containing ampicillin (100 µg/ml, 100 µl). IPTG was added to induce expression of the plasmid. The galectin-1 recombinant protein was purified with Ni-NTA beads, and analyzed with SDS-PAGE and Western blotting using anti-serum of mouse immunized with whole worms of A. cantonensis. The agglutination reaction with red blood cells in fresh blood of ICR mouse was observed for the 10-fold serial dilutions of recombinant proteins (5.55 × 10(-1)-5.55 × 10(-5) ng/µl). Results: The Swiss Model analysis showed that the functional galectin-1 had a non-dimeric form. As was expected, the RT-PCR products had a size of 850 bp. Results of double digestion, PCR and sequencing showed successful construction of the pCold Ⅲ-galectin-1 plasmid. SDS-PAGE revealed expression of soluble recombinant fusion protein with molecular weight of ~36 000. Western blotting showed that the galectin-1 protein was recognized by mouse anti-serum. In addition, the minimun concentration of galectin-1 that showed significant agglutination reactions with mouse red blood cells was 5.55 × 10(-4) ng/µl. Conclusion: The galectin-1 clone can be expressed in the pCold Ⅲ plasmid, and its protein product has agglutination property.


Asunto(s)
Angiostrongylus cantonensis , Clonación Molecular , Aglutinación , Animales , Western Blotting , Electroforesis en Gel de Poliacrilamida , Escherichia coli , Galectina 1 , Expresión Génica , Ratones , Ratones Endogámicos ICR , Plásmidos , Reacción en Cadena de la Polimerasa , Proteínas Recombinantes
3.
Parasit Vectors ; 11(1): 318, 2018 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-29843794

RESUMEN

BACKGROUND: Angiostrongylus cantonensis is a human zoonotic nematode parasite. Our previous studies found that PAS-5 and Galectin-1 (Gal-1) proteins of A. cantonensis could be strongly recognized by sera from mice infected with A. cantonensis. In this study, we further evaluated the potential roles of these two proteins in the induction of immune response in mice. METHODS: Mice were immunized with recombinant PAS-5 or Gal-1 and then challenged with 30 infective A. cantonensis larvae following the last immunization. We then examined the infected mice for changes in serum antibodies and cytokines by ELISA, CD4+ T cells and CD4+CD25+FoxP3+ regulatory T cells (Tregs) by flow cytometry, and tissue damage severity by hematoxylin-eosin (H&E) staining. RESULTS: Compared with control mice, the PAS-5-immunized mice exhibited increased levels of serum antibodies and cytokines (except for IL-10) at different time points post-infection. PAS-5 immunization promoted significant proliferation of CD4+ T cells, and caused more damage in the brain tissue. Vaccination with Gal-1 inhibited the production of antibodies (except for IgG1) and IFN-γ, but promoted the expression of IL-4 and IL-10. Gal-1 immunization results in significant increases in the levels of CD4+CD25+FoxP3+ Tregs, and mild inflammatory changes. CONCLUSIONS: Taken together, our findings show that PAS-5 enhances, but Gal-1 inhibits the immune response in the early stage of A. cantonensis infections.


Asunto(s)
Angiostrongylus cantonensis/inmunología , Galectina 1/inmunología , Proteínas del Helminto/inmunología , Infecciones por Strongylida/inmunología , Angiostrongylus cantonensis/química , Angiostrongylus cantonensis/patogenicidad , Animales , Encéfalo/parasitología , Encéfalo/patología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Femenino , Citometría de Flujo , Galectina 1/metabolismo , Proteínas del Helminto/metabolismo , Humanos , Inmunidad Celular , Inmunidad Humoral , Ratones , Ratones Endogámicos C57BL , Organismos Libres de Patógenos Específicos , Bazo/parasitología , Bazo/patología , Infecciones por Strongylida/parasitología , Infecciones por Strongylida/patología , Linfocitos T Reguladores/inmunología
4.
Vet Parasitol ; 240: 1-10, 2017 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-28576337

RESUMEN

The insulin-like signaling (IIS) pathway is considered to be significant in regulating fat metabolism, dauer formation, stress response and longevity in Caenorhabditis elegans. "Dauer hypothesis" indicates that similar IIS transduction mechanism regulates dauer development in free-living nematode C. elegans and the development of infective third-stage larvae (iL3) in parasitic nematodes, and this is bolstered by a few researches on structures and functions of the homologous genes in the IIS pathway cloned from several parasitic nematodes. In this study, we identified the insulin-like receptor encoding gene, Acan-daf-2, from the parasitic nematode Angiostrongylus cantonensis, and determined the genomic structures, transcripts and functions far more thorough in longevity, stress resistance and dauer formation. The sequence of Acan-DAF-2, consisting of 1413 amino acids, contained all of the characteristic domains of insulin-like receptors from other taxa. The expression patterns of Acan-daf-2 in the C. elegans surrogate system showed that pAcan-daf-2:gfp was only expressed in intestine, compared with the orthologue in C. elegans, Ce-daf-2 in both intestine and neurons. In addition to the similar genomic organization to Ce-daf-2, Acan-DAF-2 could also negatively regulate Ce-DAF-16A through nuclear/cytosolic translocation and partially restore the C. elegans daf-2(e1370) mutation in longevity, dauer formation and stress resistance. These findings provided further evidence of the functional conservation of DAF-2 between parasitic nematodes and the free-living nematode C. elegans, and might be significant in understanding the developmental biology of nematode parasites, particularly in the infective process and the host-specificity.


Asunto(s)
Angiostrongylus cantonensis/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas del Helminto/metabolismo , Longevidad/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos , Secuencia de Aminoácidos , Animales , Caenorhabditis elegans/genética , ADN/genética , Regulación de la Expresión Génica/fisiología , Proteínas del Helminto/genética , Calor/efectos adversos , Organismos Modificados Genéticamente , Filogenia , Especificidad de la Especie
5.
Acta Trop ; 164: 125-136, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27619188

RESUMEN

Fork head box transcription factors subfamily O (FoxO) is regarded to be significant in cell-cycle control, cell differentiation, ageing, stress response, apoptosis, tumour formation and DNA damage repair. In the free-living nematode Caenorhabditis elegans, the FoxO transcription factor is encoded by Ce-daf-16, which is negatively regulated by insulin-like signaling (IIS) and involved in promoting dauer formation through bringing about its hundreds of downstream genes expression. In nematode parasites, orthologues of daf-16 from several species have been identified, with functions in rescue of dauer phenotypes determined in a surrogate system C. elegans. In this study, we identified the FoxO encoding gene, Acan-daf-16, from the parasitic nematode Angiostrongylus cantonensis, and determined the genomic structures, transcripts and functions far more thorough in longevity, stress resistance and dauer formation. Acan-daf-16 encodes two proteins, Acan-DAF-16A and Acan-DAF-16B, consisting of 555 and 491 amino acids, respectively. Both isoforms possess the highly conserved fork head domains. Acan-daf-16A and Acan-daf-16B are expressed from distinct promoters. The expression patterns of Acan-daf-16 isoforms in the C. elegans surrogate system showed that p Acan-daf-16a:gfp was expressed in all cells of C. elegans, including the pharynx, and the expression of p Acan-daf-16b:gfp was restricted to the pharynx. In addition to the same genomic organization to the orthologue in C. elegans, Ce-daf-16, both Acan-DAF-16 isoforms could restore the C. elegans daf-16(mg54) mutation in longevity, dauer formation and stress resistance, in spite of the partial complementation of Acan-DAF-16B isoform in longevity. These findings provide further evidence of the functional conservation of DAF-16s between parasitic nematodes and the free-living nematode C. elegans.


Asunto(s)
Angiostrongylus cantonensis/genética , Factores de Transcripción Forkhead , Secuencia de Aminoácidos , Animales , ADN de Helmintos/química , Femenino , Regulación del Desarrollo de la Expresión Génica , Datos de Secuencia Molecular , Ratas , Ratas Sprague-Dawley , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA