Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Environ Sci Technol ; 58(24): 10717-10728, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38847549

RESUMEN

Ruthenium single-atom catalysts have great potential in ammonia-selective catalytic oxidation (NH3-SCO); however, the stable sp3 hybrid orbital of NH3 molecules makes N(sp3)-H dissociation a challenge for conventional symmetrical metallic oxide catalysts. Herein, we propose a heterogeneous interface reverse atom capture strategy to construct Ru with unique asymmetric Ru1N2O1 coordination. Ru1N2O1/CeO2 exhibits intrinsic low-temperature conversion (T100 at 160 °C) compared to symmetric coordinated Ru-based (280 °C), Ir-based (220 °C), and Pt-based (200 °C) catalysts, and the TOF is 65.4 times that of Ag-based catalysts. The experimental and theoretical studies show that there is a strong d-p orbital interaction between Ru and N atoms, which not only enhances the adsorption of ammonia at the Ru1N2O1 position but also optimizes the electronic configuration of Ru. Furthermore, the affinity of Ru1N2O1/CeO2 to water is significantly weaker than that of conventional catalysts (the binding energy of the Pd3Au1 catalyst is -1.19 eV, but it is -0.39 eV for our material), so it has excellent water resistance. Finally, the N(sp3)-H activation of NH3 requires the assistance of surface reactive oxygen species, but we found that asymmetric Ru1N2O1 can directly activate the N(sp3)-H bond without the involvement of surface reactive oxygen species. This study provides a novel principle for the rational design of the proximal coordination of active sites to achieve its optimal catalytic activity in single-atom catalysis.


Asunto(s)
Amoníaco , Oxidación-Reducción , Rutenio , Amoníaco/química , Catálisis , Rutenio/química
2.
Environ Sci Technol ; 58(1): 906-914, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38126778

RESUMEN

Developing effective catalysts for N2O decomposition at low temperatures is challenging. Herein, the Cs-O-Co structure, as the active species fabricated by single-layer atoms of Cs over pure Co3O4, originally exhibited great catalytic activity of N2O decomposition in simulated vehicle exhaust and flue gas from nitric acid plants. A similar catalytic performance was also observed for Na, K, and Rb alkali metals over Co3O4 catalysts for N2O decomposition, illustrating the prevalence of alkali-metal-promotion over Co3O4 in practical applications. The catalytic results indicated that the TOF of Co3O4 catalysts loaded by 4 wt% Cs was nearly 2 orders of magnitude higher than that of pure Co3O4 catalysts at 300 °C. Interestingly, the conversions of N2O decomposition over Co3O4 catalysts doped by the same Cs loadings were significantly inhibited. Characterization results indicated that the primary active Cs-O-Co structure was formed by highly orbital hybridization between the Cs 6s and the O 2p orbital over the supported Co3O4 catalysts, where Cs could donate electrons to Co3+ and produce much more Co2+. In contrast, the doped Co3O4 catalysts were dominated by Cs2O2 species; meanwhile, CsOH species was generated by adsorbed water vapor led to a significant decrease in catalytic activity. In situ DRIFTS, rigorous kinetics, and DFT results elaborated the reaction mechanism of N2O decomposition, where the direct decomposition of adsorbed N2O was the kinetically relevant step over supported catalysts in the absence of O2. Meanwhile, the assistance of adsorbed N2O decomposition by activated oxygen was observed as the kinetically relevant step in the presence of O2. The results may pave a promising path toward developing alkali-metal-promotion catalysts for efficient N2O decomposition.


Asunto(s)
Cobalto , Óxidos , Óxidos/química , Cobalto/química , Álcalis
3.
Environ Sci Technol ; 58(1): 960-969, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38150269

RESUMEN

SO2 reduction with CH4 to produce elemental sulfur (S8) or other sulfides is typically challenging due to high energy barriers and catalyst poisoning by SO2. Herein, we report that a comproportionation reaction (CR) induced by H2S recirculating significantly accelerates the reactions, altering reaction pathways and enabling flexible adjustment of the products from S8 to sulfides. Results show that SO2 can be fully reduced to H2S at a lower temperature of 650 °C, compared to the 800 °C required for the direct reduction (DR), effectively eliminating catalyst poisoning. The kinetic rate constant is significantly improved, with CR at 650 °C exhibiting about 3-fold higher value than DR at 750 °C. Additionally, the apparent activation energy decreases from 128 to 37 kJ/mol with H2S, altering the reaction route. This CR resolves the challenges related to robust sulfur-oxygen bond activation and enhances CH4 dissociation. During the process, the well-dispersed lamellar MoS2 crystallites with Co promoters (CoMoS) act as active species. H2S facilitates the comproportionation reaction, reducing SO2 to a nascent sulfur (Sx*). Subsequently, CH4 efficiently activates CoMoS in the absence of SO2, forming H2S. This shifts the mechanism from Mars-van Krevelen (MvK) in DR to sequential Langmuir-Hinshelwood (L-H) and MvK in CR. Additionally, it mitigates sulfation poisoning through this rapid activation reaction pathway. This unique comproportionation reaction provides a novel strategy for efficient sulfur resource utilization.


Asunto(s)
Metano , Dióxido de Azufre , Metano/química , Sulfuros/química , Temperatura , Azufre/química , Oxidación-Reducción
4.
Environ Sci Technol ; 58(27): 12201-12211, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38934498

RESUMEN

The elevation of the low-temperature oxidation activity for Pt/CeO2 catalysts is challenging to meet the increasingly stringent requirements for effectively eliminating carbon monoxide (CO) from automobile exhaust. Although reducing activation is a facile strategy for boosting reactivity, past research has mainly concentrated on applying H2 as the reductant, ignoring the reduction capabilities of CO itself, a prevalent component of automobile exhaust. Herein, atomically dispersed Pt/CeO2 was fabricated and activated by CO, which could lower the 90% conversion temperature (T90) by 256 °C and achieve a 20-fold higher CO consumption rate at 200 °C. The activated Pt/CeO2 catalysts showed exceptional catalytic oxidation activity and robust hydrothermal stability under the simulated working conditions for gasoline or diesel exhausts. Characterization results illustrated that the CO activation triggered the formation of a large portion of Pt0 terrace sites, acting as inherent active sites for CO oxidation. Besides, CO activation weakened the Pt-O-Ce bond strength to generate a surface oxygen vacancy (Vo). It served as the oxygen reservoir to store the dissociated oxygen and convert it into active dioxygen intermediates. Conversely, H2 activation failed to stimulate Vo, but triggered a deactivating transformation of the Pt nanocluster into inactive PtxOy in the presence of oxygen. The present work offers coherent insight into the upsurging effect of CO activation on Pt/CeO2, aiming to set up a valuable avenue in elevating the efficiency of eliminating CO, C3H6, and NH3 from automobile exhaust.


Asunto(s)
Monóxido de Carbono , Oxidación-Reducción , Catálisis , Monóxido de Carbono/química , Emisiones de Vehículos , Platino (Metal)/química , Cerio/química
5.
Environ Sci Technol ; 57(7): 2949-2957, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36751011

RESUMEN

Resolving severe deactivation by alkali metals for selective catalytic reduction of NOx with NH3 (NH3-SCR) is challenging. Herein, surface Ce2(SO4)3 species as a self-protection armor originally exhibited antipoisoning of potassium over ceria-based catalysts. The self-protection armor was also effective for other alkali (Na), alkali-earth (Ca), and heavy (Pb) metals, considerably resolving the deactivation of ceria-based SCR catalysts in practical applications. The catalytic activity tests indicated that the presence of ∼0.8 wt % potassium did not deactivate sulfated CeO2 catalysts, yet commercial V2O5-WO3/TiO2 catalysts almost lost the NOx conversions. Potassium preferably bonded with surface sulfates to form K2SO4 accompanied with the majority of surface Ce2(SO4)3 over sulfated CeO2 catalysts, but preferably coupled with active vanadia to generate inactive KVO3 species over V2O5-WO3/TiO2 catalysts. Such an active Ce2(SO4)3 species facilitated the adsorption and reactivity of NH3 and NOx, enabling ceria catalysts to maintain high catalytic efficiency in the presence of potassium. Conversely, the introduction of potassium into V2O5-WO3/TiO2 catalysts caused a considerable loss of surface acidity, hindering catalyst reactivity during the SCR reaction. The self-protection armor of Ce2(SO4)3 species may open a promising pathway to develop efficient ceria-based SCR catalysts with strong antipoisoning ability.


Asunto(s)
Amoníaco , Titanio , Catálisis , Potasio , Óxidos de Azufre , Álcalis
6.
Environ Sci Technol ; 57(45): 17566-17576, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37906097

RESUMEN

Low-temperature catalytic oxidation is of significance to the degradation of halogenated volatile organic compounds (HVOCs) to avoid hazardous byproducts with low energy consumption. Efficient molecular oxygen (O2) activation is pivotal to it but usually limited by the insufficient electron cloud density at the metal center. Herein, Ru-B catalysts with enhanced electron density around Ru were designed to achieve efficient O2 activation, realizing dibromomethane (DBM) degradation T90 at 182 °C on RuB1/TiO2 (about 30 °C lower than pristine Ru/TiO2) with a TOFRu value of 0.055 s-1 (over 8 times that of Ru/TiO2). Compared to the limited electron transfer (0.02 e) on pristine Ru/TiO2, the Ru center gained sufficient negative charges (0.31 e) from BOx via strong p-d orbital hybridization. The Ru-B site then acted as the electron donor complexing with the 2π* antibonding orbital of O2 to realize the O2 dissociative activation. The reactive oxygen species formed thereby could initiate a fast conversion and oxidation of formate intermediates, thus eventually boosting the low-temperature catalytic activity. Furthermore, we found that the Ru-B sites for O2 activation have adaptation for pollutant removal and multiple metal availability. Our study shed light on robust O2 activation catalyst design based on electron density adjustment by boron.


Asunto(s)
Boro , Electrones , Temperatura , Metales
7.
Environ Sci Technol ; 57(48): 20431-20439, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37992298

RESUMEN

The interaction between mercury (Hg) and inorganic compounds, including selenium (Se), sulfur (S), and halogens (X = Cl, Br, or I), plays a critical role in the global mercury cycle. However, most previously reported mercury compounds are susceptible to reduction, leading to the release of elemental mercury (Hg0) and causing secondary pollution. In this study, we unveil a groundbreaking discovery that underscores the vital role of halogenation in creating exceptionally stable Hg3Se2X2 compounds. Through the dynamic interplay of Hg, Se, and halogens, an intermediary stage denoted [HgSe]m[HgX2]n emerges, and this transformative process significantly elevates the stabilization of mercury. Remarkably, halogen ions strategically occupy pores at the periphery of HgSe clusters, engendering a more densely packed atomic arrangement of Hg, Se, and halogen components. A marked enhancement in both thermal and acid stability is observed, wherein temperatures ascend from 130 to 300 °C (transitioning from HgSe to Hg3Se2Cl2). This sequence of escalating stability follows the order HgSe < Hg3Se2I2 < Hg3Se2Br2 < Hg3Se2Cl2 for thermal resilience, complemented by virtually absent acid leaching. This innovative compound formation fundamentally alters the transformation pathways of gaseous Hg0 and ionic mercury (Hg2+), resulting in highly efficient in situ removal of both Hg0 and Hg2+ ions. These findings pave the way for groundbreaking advancements in mercury stabilization and environmental remediation strategies, offering a comprehensive solution through the creation of chemically stable precipitates.


Asunto(s)
Compuestos de Mercurio , Mercurio , Selenio , Mercurio/química , Halogenación , Halógenos , Iones , Compuestos de Mercurio/química
8.
Environ Sci Technol ; 57(50): 21272-21283, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38051813

RESUMEN

Cobalt-based catalysts have been identified for effective CO oxidation, but their activity is limited by molecular O2 and interfacial oxygen passivation at low temperatures. Optimization of the d-band structure of the cobalt center is an effective method to enhance the dissociation of oxygen species. Here, we developed a novel Co/FeOx catalyst based on selective cationic deposition to anchor Co cations at the defect site of FeOx, which exhibited superior intrinsic low-temperature activity (100%, 115 °C) compared to that of Pt/Co3O4 (100%, 140 °C) and La/Co2O3 (100%, 150 °C). In contrast to catalysts with oxygen defects, the cationic Fe defect in Co/FeOx showed an exceptional ability to accept electrons from the Co 3d orbital, resulting in significant electron delocalization at the Co sites. The Co/FeOx catalyst exhibited a remarkable turnover frequency of 178.6 per Co site per second, which is 2.3 times higher than that of most previously reported Co-based catalysts. The d-band center is shifted upward by electron redistribution effects, which promotes the breaking of the antibonding orbital *π of the O═O bond. In addition, the controllable regulation of the Fe-Ov-Co oxygen defect sites enlarges the Fe-O bond from 1.97 to 2.02 Å to activate the lattice oxygen. Moreover, compared to CoxFe3-xO4, Co/FeOx has a lower energy barrier for CO oxidation, which significantly accelerates the rate-determining step, *COO formation. This study demonstrates the feasibility of modulating the d-band structure to enhance O2 molecular and interfacial lattice oxygen activation.


Asunto(s)
Nanoestructuras , Cationes , Cobalto , Electrónica , Oxígeno
9.
Environ Sci Technol ; 57(29): 10882-10890, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37436147

RESUMEN

Gaseous elemental mercury (Hg0) extraction from industrial flue gases is undergoing intense research due to its unique properties. Selective adsorption that renders Hg0 to HgO or HgS over metal oxide- or sulfide-based sorbents is a promising method, yet the sorbents are easily poisoned by sulfur dioxide (SO2) and H2O vapor. The Se-Cl intermediate derived from SeO2 and HCl driven by SO2 has been demonstrated to stabilize Hg0. Thus, a surface-induced method was put forward when using γ-Al2O3 supported selenite-chloride (xSeO32--yCl-, named xSe-yCl) for mercury deposition. Results confirmed that under 3000 ppm SO2 and 4% H2O, Se-2Cl exhibited the highest induced adsorption performance at 160 °C and higher humidity can accelerate the induction process. Driven by SO2 under the wet interface, the in situ generated active Se0 has high affinity toward Hg0, and the introduction of Cl- enabled the fast-trapping and stabilization of Hg0 due to its intercalation in the HgSe product. Additionally, the long-time scale-up experiment showed a gradient color change of the Se-2Cl-induced surface, which maintained almost 100% Hg0 removal efficiency over 180 h with a normalized adsorption capacity of 157.26 mg/g. This surface-induced method has the potential for practical application and offers a guideline for reversing the negative effect of SO2 on gaseous pollutant removal.


Asunto(s)
Contaminantes Atmosféricos , Contaminantes Ambientales , Mercurio , Dióxido de Azufre , Mercurio/análisis , Cloruros , Óxidos , Adsorción , Contaminantes Atmosféricos/análisis
10.
Environ Sci Technol ; 57(13): 5424-5432, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36939455

RESUMEN

Flue gas mercury removal is mandatory for decreasing global mercury background concentration and ecosystem protection, but it severely suffers from the instability of traditional demercury products (e.g., HgCl2, HgO, HgS, and HgSe). Herein, we demonstrate a superstable Hg3Se2Cl2 compound, which offers a promising next-generation flue gas mercury removal strategy. Theoretical calculations revealed a superstable Hg bonding structure in Hg3Se2Cl2, with the highest mercury dissociation energy (4.71 eV) among all known mercury compounds. Experiments demonstrate its unprecedentedly high thermal stability (>400 °C) and strong acid resistance (5% H2SO4). The Hg3Se2Cl2 compound could be produced via the reduction of SeO32- to nascent active Se0 by the flue gas component SO2 and the subsequent combination of Se0 with Hg0 and Cl- ions or HgCl2. During a laboratory-simulated experiment, this Hg3Se2Cl2-based strategy achieves >96% removal efficiencies of both Hg0 and HgCl2 enabling nearly zero Hg0 re-emission. As expected, real mercury removal efficiency under Se-rich industrial flue gas conditions is much more efficient than Se-poor counterparts, confirming the feasibility of this Hg3Se2Cl2-based strategy for practical applications. This study sheds light on the importance of stable demercury products in flue gas mercury treatment and also provides a highly efficient and safe flue gas demercury strategy.


Asunto(s)
Contaminantes Atmosféricos , Mercurio , Mercurio/análisis , Ecosistema , Gases/química , Contaminantes Atmosféricos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA