Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Neurophysiol ; 129(5): 984-998, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37017327

RESUMEN

Understanding how the central nervous system coordinates diverse motor outputs has been a topic of extensive investigation. Although it is generally accepted that a small set of synergies underlies many common activities, such as walking, whether synergies are equally robust across a broader array of gait patterns or can be flexibly modified remains unclear. Here, we evaluated the extent to which synergies changed as nondisabled adults (n = 14) explored gait patterns using custom biofeedback. Secondarily, we used Bayesian additive regression trees to identify factors that were associated with synergy modulation. Participants explored 41.1 ± 8.0 gait patterns using biofeedback, during which synergy recruitment changed depending on the type and magnitude of gait pattern modification. Specifically, a consistent set of synergies was recruited to accommodate small deviations from baseline, but additional synergies emerged for larger gait changes. Synergy complexity was similarly modulated; complexity decreased for 82.6% of the attempted gait patterns, but distal gait mechanics were strongly associated with these changes. In particular, greater ankle dorsiflexion moments and knee flexion through stance, as well as greater knee extension moments at initial contact, corresponded to a reduction in synergy complexity. Taken together, these results suggest that the central nervous system preferentially adopts a low-dimensional, largely invariant control strategy but can modify that strategy to produce diverse gait patterns. Beyond improving understanding of how synergies are recruited during gait, study outcomes may also help identify parameters that can be targeted with interventions to alter synergies and improve motor control after neurological injury.NEW & NOTEWORTHY We used a motor control-based biofeedback system and machine learning to characterize the extent to which nondisabled adults can modulate synergies during gait pattern exploration. Results revealed that a small library of synergies underlies an array of gait patterns but that recruitment from this library changes as a function of the imposed biomechanical constraints. Our findings enhance understanding of the neural control of gait and may inform biofeedback strategies to improve synergy recruitment after neurological injury.


Asunto(s)
Marcha , Músculo Esquelético , Adulto , Humanos , Músculo Esquelético/fisiología , Electromiografía/métodos , Teorema de Bayes , Marcha/fisiología , Biorretroalimentación Psicológica , Fenómenos Biomecánicos
2.
J Biomech ; 133: 110953, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35092908

RESUMEN

Muscle synergy analysis is commonly used to characterize motor control during dynamic tasks like walking. For clinical populations, such as children with cerebral palsy (CP), synergies are altered compared to nondisabled (ND) peers and have been associated with both function and treatment outcomes. However, the factors that contribute to altered synergies remain unclear. In particular, the extent to which synergies reflect altered biomechanics (e.g., changes in gait) or underlying neurologic injury is debated. To evaluate the effect that altered biomechanics have on synergies, we compared synergy complexity and structure while ND individuals (n = 14) emulated four common CP gait patterns (equinus, equinus-crouch, mild-crouch, and moderate crouch). Secondarily, we compared the similarity of ND synergies during emulation to synergies from a retrospective cohort of individuals with CP walking in similar gait patterns (n = 28 per pattern). During emulation, ND individuals recruited similar synergies as baseline walking. However, pattern-specific deviations in synergy activations and complexity emerged. In particular, equinus gait altered plantarflexor activation timing and reduced synergy complexity. Importantly, ND synergies during emulation were distinct from those observed in CP for all gait patterns. These results suggest that altered gait patterns are not primarily driving the changes in synergies observed in CP, highlighting the value of using synergies as a tool to capture patient-specific differences in motor control. However, they also highlight the sensitivity of both synergy activations and complexity to altered biomechanics, which should be considered when using these measures in clinical care.


Asunto(s)
Parálisis Cerebral , Trastornos Neurológicos de la Marcha , Fenómenos Biomecánicos , Niño , Electromiografía/métodos , Marcha/fisiología , Humanos , Músculo Esquelético/fisiología , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA