RESUMEN
Limited flight duration is a considerable obstacle to the widespread application of micro aerial vehicles (MAVs)1-3, especially for ultralightweight MAVs weighing less than 10 g, which, in general, have a flight endurance of no more than 10 min (refs. 1,4). Sunlight power5-7 is a potential alternative to improve the endurance of ultralight MAVs, but owing to the restricted payload capacity of the vehicle and low lift-to-power efficiency of traditional propulsion systems, previous studies have not achieved untethered sustained flight of MAVs fully powered by natural sunlight8,9. Here, to address these challenges, we introduce the CoulombFly, an electrostatic flyer consisting of an electrostatic-driven propulsion system with a high lift-to-power efficiency of 30.7 g W-1 and an ultralight kilovolt power system with a low power consumption of 0.568 W, to realize solar-powered sustained flight of an MAV under natural sunlight conditions (920 W m-2). The vehicle's total mass is only 4.21 g, within 1/600 of the existing lightest sunlight-powered aerial vehicle6.
RESUMEN
Phototransduction is based on opsins that drive distinct types of Gα cascades. Although nonvisual photosensitivity has long been known in marine bivalves, the underlying molecular basis and phototransduction mechanism are poorly understood. Here, we introduced the eyeless razor clam Sinonovacula constricta as a model to clarify this issue. First, we showed that S. constricta was highly diverse in opsin family members, with a significant expansion in xenopsins. Second, the expression of putative S. constricta opsins was highly temporal-spatio specific, indicating their potential roles in S. constricta development and its peripheral photosensitivity. Third, by cloning four S. constricta opsins with relatively higher expression (Sc_opsin1, 5, 7, and 12), we found that they exhibited different expression levels in response to different light environments. Moreover, we demonstrated that these opsins (excluding Sc_opsin7) couple with Gαq and Gαi cascades to mediate the light-dependent Ca2+ (Sc_opsin1 and 5) and cAMP (Sc_opsin12) signaling pathways. The results indicated that Sc_opsin1 and 5 belonged to Gq-opsins, Sc_opsin12 belonged to Gi-opsins, while Sc_opsin7 might act as a photo-isomerase. Furthermore, we found that the phototransduction function of S. constricta Gq-opsins was dependent on the lysine at the seventh transmembrane domain, and greatly influenced by the external light spectra in a complementary way. Thus, a synergistic photosensitive system mediated by opsins might exist in S. constricta to rapidly respond to the transient or subtle changes of the external light environment. Collectively, our findings provide valuable insights into the evolution of opsins in marine bivalves and their potential functions in nonvisual photosensitivity.
Asunto(s)
Bivalvos , Fototransducción , Opsinas , Animales , Bivalvos/genética , Bivalvos/fisiología , Opsinas/genética , Opsinas/fisiología , FilogeniaRESUMEN
As an efficient and clean energy carrier, hydrogen is expected to play a key role in future energy systems. However, hydrogen-storage technology must be safe with a high hydrogen-storage density, which is difficult to achieve. MgH2 is a promising solid-state hydrogen-storage material owing to its large hydrogen-storage capacity (7.6 wt %) and excellent reversibility, but its large-scale utilization is restricted by slow hydrogen-desorption kinetics. Although catalysts can improve the hydrogen-storage kinetics of MgH2, they reduce the hydrogen-storage capacity. Single-atom catalysts maximize the atom utilization ratio and the number of interfacial sites to boost the catalytic activity, while easy aggregation at high temperatures limits further application. Herein, we designed a single-atom Ni-loaded TiO2 catalyst with superior thermal stability and catalytic activity. The optimized 15wt%-Ni0.034@TiO2 catalyst reduced the onset dehydrogenation temperature of MgH2 to 200 °C. At 300 °C, the H2 released and absorbed 4.6 wt % within 5 min and 6.53 wt % within 10 s, respectively. The apparent activation energies of MgH2 dehydrogenation and hydrogenation were reduced to 64.35 and 35.17 kJ/mol of H2, respectively. Even after 100 cycles of hydrogenation and dehydrogenation, there was still a capacity retention rate of 97.26%. The superior catalytic effect is attributed to the highly synergistic catalytic activity of single-atom Ni, numerous oxygen vacancies, and multivalent Tix+ in the TiO2 support, in which the single-atom Ni plays the dominant role, accelerating electron transfer between Mg2+ and H- and weakening the Mg-H bonds. This work paves the way for superior hydrogen-storage materials for practical unitization and also extends the application of single-atom catalysis in high-temperature solid-state reactions.
RESUMEN
Smart photovoltaic windows (SPWs) provide a high-efficiency and energy-saving strategy owing to the dual capabilities of electricity generation and sunlight modulation achieved by tunable colors and transmittances. Due to the deterioration of chromic process on photovoltaic layers, SPWs usually suffer from poor cycling stability. Moreover, thermochromic SPWs with a multilayer structure usually change transmittance without reversible color transitions. To address these issues, inspired by chameleon skin, bionic SPWs are designed and constructed by integrating hydrogel, CsPbBr3 semitransparent perovskite solar cells (ST-PSCs), and transparent polymer film. The SPWs realize reversible transitions between transparent green (25 °C) and opaque yellow (45 °C) states in a short duration (2 min) under natural conditions. By optimizing perovskite film and ultrathin-metal electrodes, CsPbBr3 ST-PSCs achieve a good trade-off between transmittance and efficiency, delivering the highest photovoltaic efficiency (8.35%) and a record light utilization efficiency (4.43). Ultimately, the multilayer SPWs maintain stable optical properties and more than 88% initial conversion efficiency after 100 transition cycles, presenting excellent cycling stability. This study proposes a novel approach and device structure for SPWs with high cycling stability, switchable colors, and switchable transmittances. It also paves the way for smart photovoltaic deployment in buildings and many other fields.
RESUMEN
Fucoxanthin, a natural carotenoid that has substantial pharmaceutical value due to its anticancer, antioxidant, antiobesity, and antidiabetic properties, is biosynthesized from glyceraldehyde-3-phosphate (G3P) via a series of enzymatic reactions. However, our understanding of the transcriptional mechanisms involved in fucoxanthin biosynthesis remains limited. Using reverse genetics, the med8 mutant was identified based on its phenotype of reduced fucoxanthin content, and the biological functions of MED8 in fucoxanthin synthesis were characterized using approaches such as gene expression, protein subcellular localization, protein-protein interaction and chromatin immunoprecipitation assay. Gene-editing mutants of MED8 exhibited decreased fucoxanthin content as well as reduced expression levels of six key genes involved in fucoxanthin synthesis, namely DXS, PSY1, ZDS-like, CRTISO5, ZEP1, and ZEP3, when compared to the wild-type (WT) strain. Furthermore, we showed that MED8 interacts with HSF3, and genetic analysis revealed their shared involvement in the genetic pathway governing fucoxanthin synthesis. Additionally, HSF3 was required for MED8 association with the promoters of the six fucoxanthin synthesis genes. In conclusion, MED8 and HSF3 are involved in fucoxanthin synthesis by modulating the expression of the fucoxanthin synthesis genes. Our results increase the understanding of the molecular regulation mechanisms underlying fucoxanthin synthesis in the diatom P. tricornutum.
Asunto(s)
Diatomeas , Factores de Transcripción del Choque Térmico/metabolismo , Diatomeas/genética , Diatomeas/metabolismo , Xantófilas/metabolismo , Carotenoides/metabolismoRESUMEN
Members of the Signal Transducer and Activator of Transcription (STAT) family function pivotally as transcriptional activators integral to the modulation of inflammatory responses. The aquaculture of silver pomfret is frequently compromised by the imposition of exogenous stressors, which include thermal fluctuations, notably low-temperatures, diminished oxygen levels, and the onslaught of bacterial pathogens. Notwithstanding the critical impact of these stressors, the scientific literature presents a notable gap in our understanding of the STAT pathway's role in the silver pomfret's adaptive response mechanisms. To address this lacuna, we identified stat genes in the silver pomfret-denominated as Pastat1, Pastat2, Pastat3, Pastat4, and Pastat5-through a thorough and systematic bioinformatics analysis. Further scrutiny of the gene configurations and constituent motifs has elucidated that STAT proteins possess analogous structural frameworks and exhibit significant evolutionary preservation. Subsequently, the expression patterns of five stat genes were verified by RT-qPCR in twelve different tissues and four growth periods in healthy fish, showing that the expression of Pastat genes was temporally and spatially specific, with most of the stat genes expressed at higher levels in the spleen, following muscle, gill, and liver. Transcriptomic analysis of exposure to exogenous stressors, specifically formaldehyde and low-temperature conditions, elucidated that Pastat1 and Pastat2 genes exhibited a heightened sensitivity to these environmental challenges. RT-qPCR assays demonstrated a marked alteration in the expression profiles of jak1 and Pastat gene suites in PaS upon prolonged bacterial infection subsequent to these exogenous insults. Moreover, the gene expression of the downstream effectors involved in innate immunity and apoptosis displayed marked deviations. This study additionally elucidated the Pastat gene family's role in modulating the innate immune response and apoptotic regulation within the silver pomfret during exogenous stressors and subsequent pathogenic incursions.
Asunto(s)
Enfermedades de los Peces , Proteínas de Peces , Inmunidad Innata , Perciformes , Factores de Transcripción STAT , Estrés Fisiológico , Animales , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Proteínas de Peces/química , Enfermedades de los Peces/inmunología , Perciformes/inmunología , Perciformes/genética , Inmunidad Innata/genética , Factores de Transcripción STAT/genética , Factores de Transcripción STAT/metabolismo , Regulación de la Expresión Génica/inmunología , Regulación de la Expresión Génica/efectos de los fármacos , Perfilación de la Expresión Génica/veterinaria , Filogenia , Alineación de Secuencia/veterinaria , Vibriosis/inmunología , Vibriosis/veterinaria , Secuencia de AminoácidosRESUMEN
Histones and their N-terminal or C-terminal derived peptides have been studied in vertebrates and presented as potential antimicrobial agents playing important roles in the innate immune defenses. Although histones and their derived peptides had been reported as components of innate immunity in invertebrates, the knowledge about the histone derived antimicrobial peptides (HDAPs) in invertebrates are still limited. Using a peptidomic technique, a set of peptide fragments derived from the histones was identified in this study from the serum of microbes challenged Mytilus coruscus. Among the 85 identified histone-derived-peptides with high confidence, 5 HDAPs were chemically synthesized and the antimicrobial activities were verified, showing strong growth inhibition against Gram-positive bacteria, Gram-negative bacteria, and fungus. The gene expression level of the precursor histones matched by representative HDAPs were further tested using q-PCR, and the results showed a significant upregulation of the histone gene expression levels in hemocytes, gill, and mantle of the mussel after immune stress. In addition, three identified HDAPs were selected for preparation of specific antibodies, and the corresponding histones and their derived C-terminal fragments were detected by Western blotting in the blood cell and serum of immune challenged mussel, respectively, indicating the existence of HDAPs in M. coruscus. Our findings revealed the immune function of histones in Mytilus, and confirmed the existence of HDAPs in the mussel. The identified Mytilus HDAPs represent a new source of immune effector with antimicrobial function in the innate immune system, and thus provide promising candidates for the treatment of microbial infections in aquaculture and medicine.
Asunto(s)
Péptidos Antimicrobianos , Histonas , Inmunidad Innata , Mytilus , Animales , Mytilus/inmunología , Mytilus/genética , Histonas/inmunología , Histonas/genética , Péptidos Antimicrobianos/farmacología , Péptidos Antimicrobianos/genética , Péptidos Antimicrobianos/química , Inmunidad Innata/genética , Bacterias Gramnegativas/fisiología , Bacterias Gramnegativas/efectos de los fármacosRESUMEN
BACKGROUND: Inflammatory bowel disease (IBD), a chronic inflammatory condition, is caused by several factors involving aberrant immune responses. Genetic factors are crucial in IBD occurrence. Mendelian randomization (MR) can offer a new perspective in understanding IBD's genetic background. METHODS: Single nucleotide polymorphisms (SNPs) were considered instrumental variables (IVs). We analyzed the relationship between 731 immunophenotypes, 1,400 metabolite phenotypes, and IBD. The total effect was decomposed into indirect and direct effects, and the ratio of the indirect effect to the total effect was calculated. RESULTS: We identified the causal effects of HLA-DR-expressing CD14 + monocytes on IBD through MR analysis. The phenotype "HLA-DR expression on CD14 + monocytes" showed the strongest association among the selected 48 immune phenotypes. Chiro-inositol metabolites mediated the effect of CD14 + monocytes expressing HLA-DR on IBD. An increase in Chiro-inositol metabolites was associated with a reduced risk of IBD occurrence, accounting for 4.97%. CONCLUSION: Our findings revealed a new pathway by which HLA-DR-expressing CD14 + monocytes indirectly reduced the risk of IBD occurrence by increasing the levels of Chiro-inositol metabolites. The results provided a new perspective on the immunoregulatory mechanisms underlying IBD, laying a theoretical foundation for developing new therapeutic targets in the future.
Asunto(s)
Antígenos HLA-DR , Enfermedades Inflamatorias del Intestino , Inositol , Receptores de Lipopolisacáridos , Monocitos , Polimorfismo de Nucleótido Simple , Humanos , Monocitos/metabolismo , Monocitos/inmunología , Receptores de Lipopolisacáridos/metabolismo , Enfermedades Inflamatorias del Intestino/inmunología , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/metabolismo , Antígenos HLA-DR/genética , Antígenos HLA-DR/metabolismo , Inositol/metabolismo , Análisis de la Aleatorización Mendeliana , Fenotipo , Inmunofenotipificación , Femenino , MasculinoRESUMEN
Seven new formononetin derivatives (1-7) were designed and prepared from formononetin (phase II phytoestrogen). The derivatives 9-butyl-3-(4-methoxyphenyl)-9,10-dihydro-4H,8H-chromeno[8,7-e][1,3]oxazin-4-one (2) and 9-(furan-3-ylmethyl)-3-(4-methoxyphenyl)-9,10-dihydro-4H,8H-chromeno[8,7-e][1,3]oxazin-4-one (7) promoted significant osteoblast formation by modulating the BMP/Smad pathway. Compound 7 exhibited potent antiosteoclastogenesis activity in RANKL-induced RAW264.7 cells and ovariectomy (OVX)-induced osteoporosis in mice by regulation of the RANK/RANKL/OPG pathway. Compound 7 regulated osteoblast and osteoclast simultaneously and showed better effect than the well-known drug ipriflavone in vivo, suggesting 7 as a patented antiosteoporosis candidate.
Asunto(s)
Isoflavonas , Osteoblastos , Osteoclastos , Osteoporosis , Ligando RANK , Isoflavonas/farmacología , Isoflavonas/química , Animales , Osteoblastos/efectos de los fármacos , Ratones , Osteoporosis/tratamiento farmacológico , Osteoclastos/efectos de los fármacos , Células RAW 264.7 , Ligando RANK/metabolismo , Ligando RANK/efectos de los fármacos , Femenino , Estructura Molecular , Ovariectomía , OsteoprotegerinaRESUMEN
Microalgae are considered to be natural producers of bioactive pigments, with the production of pigments from microalgae being a sustainable and economical strategy that promises to alleviate growing demand. Chlorophyll, as the main pigment of photosynthesis, has been widely studied, but its medicinal applications as an antioxidant, antibacterial, and antitumor reagent are still poorly understood. Chlorophyll is the most important pigment in plants and algae, which not only provides food for organisms throughout the biosphere, but also plays an important role in a variety of human and man-made applications. The biological activity of chlorophyll is closely related to its chemical structure; its specific structure offers the possibility for its medicinal applications. This paper reviews the structural and functional roles of microalgal chlorophylls, commonly used extraction methods, and recent advances in medicine, to provide a theoretical basis for the standardization and commercial production and application of chlorophylls.
Asunto(s)
Microalgas , Humanos , Clorofila/química , Fotosíntesis , Antioxidantes/farmacología , Antioxidantes/química , PlantasRESUMEN
Chemokines play a crucial role in immune responses by facilitating the migration of cells expressing corresponding chemokine receptors along concentration gradients. Photobacterium damselae subsp. Damselae (PDD) and Nocardia seriolae (NS) are known to induce substantial mortality in silver pomfret populations, yet there exists a dearth of research regarding the immune response of CCLs in PDD- or NS-infected silver pomfret. In our investigation, we identified 10 PaCCLs, which include one fish-specific CCL (PaCCL44). Phylogenetic analysis revealed considerable diversity in CCL types and copy numbers among various teleost fishes. Notably, silver pomfret lacks specific CCL genes, with most PaCCLs exhibiting heightened expression levels in immune-related organs such as the spleen and kidney, and some being expressed in mucosal immune-related organs like the skin and gills. Transcriptome analysis conducted on silver pomfret infected with NS and PDD elucidated that the expression changes of PaCCLs primarily manifested in the spleen during the initial stages of NS infection, shifting to the kidney in later stages. Conversely, the expression changes of PaCCLs following PDD infection predominantly occurred in the kidney. In vitro studies using silver pomfret spleen cell lines demonstrated an early peak in PaCCLs expression during infection, followed by gradual decline with NS treatment and rapid diminishment with PDD treatment. These findings suggest that PaCCLs primarily support the innate immunity of silver pomfret, potentially exhibiting chemotactic effects in the early infection stages, such as the synergistic action of PaCCL4 and PaCCL25, and later serving as direct antibacterial agents. NS invasion is characterised by a chronic infection affecting multiple organs, whereas PDD primarily inflicts severe damage to the kidney. PaCCL19a and PaCCL19b are specific to PDD, and their expression levels may decrease in the later stages of infection due to PDD immune escape. These data offer initial insights into understanding the mechanism underlying the innate immune response of the CCL gene family in silver pomfret and provide theoretical underpinnings for fish culture practices.
RESUMEN
Extracellular vesicles (EVs) are nano-sized particles involved in intercellular communications that intrinsically possess many attributes as a modern drug delivery platform. Haematococcus pluvialis-derived EVs (HpEVs) can be potentially exploited as a high-value-added bioproduct during astaxanthin production. The encapsulation of HpEV cargo is a crucial key for the determination of their biological functions and therapeutic potentials. However, little is known about the composition of HpEVs, limiting insights into their biological properties and application characteristics. This study examined the protein composition of HpEVs from three growth phases of H. pluvialis grown under high light (350 µmol·m-2·s-1) and sodium acetate (45 mM) stresses. A total of 2038 proteins were identified, the majority of which were associated with biological processes including signal transduction, cell proliferation, cell metabolism, and the cell response to stress. Comparative analysis indicated that H. pluvialis cells sort variant proteins into HpEVs at different physiological states. It was revealed that HpEVs from the early growth stage of H. pluvialis contain more proteins associated with cellular functions involved in primary metabolite, cell division, and cellular energy metabolism, while HpEVs from the late growth stage of H. pluvialis were enriched in proteins involved in cell wall synthesis and secondary metabolism. This is the first study to report and compare the protein composition of HpEVs from different growth stages of H. pluvialis, providing important information on the development and production of functional microalgal-derived EVs.
Asunto(s)
Vesículas Extracelulares , Proteoma , Acetato de Sodio , Vesículas Extracelulares/metabolismo , Proteoma/metabolismo , Acetato de Sodio/metabolismo , Acetato de Sodio/farmacología , Luz , Proteómica/métodos , Estrés Fisiológico , Chlorophyceae/metabolismo , Chlorophyceae/crecimiento & desarrollo , Chlorophyta/metabolismo , Chlorophyta/crecimiento & desarrolloRESUMEN
Lipoxygenases (LOXs) from lower organisms have substrate flexibility and function versatility in fatty acid oxidation, but it is not clear how these LOXs acquired the ability to execute multiple functions within only one catalytic domain. This work studied a multifunctional LOX from red alga Pyropia haitanensis (PhLOX) which combined hydroperoxidelyase (HPL) and allene oxide synthase (AOS) activity in its active pocket. Molecular docking and site-directed mutagenesis revealed that Phe642 and Phe826 jointly regulated the double peroxidation of fatty acid, Gln777 and Asn575 were essential to the AOS function, and the HPL activity was improved when Asn575, Gln777, or Phe826 was replaced by leucine. Phylogenetic analysis indicated that Asn575 and Phe826 were unique amino acid sites in the separated clades clustered with PhLOX, whereas Phe642 and Gln777 were conserved in plant or animal LOXs. The N-terminal START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC (SRPBCC) domain of PhLOX was another key variable, as the absence of this domain disrupted the versatility of PhLOX. Moreover, the functions of two homologous LOXs from marine bacterium Shewanella violacea and red alga Chondrus crispus were examined. The HPL activity of PhLOX appeared to be inherited from a common ancestor, and the AOS function was likely acquired through mutations in some key residues in the active pocket. Taken together, our results suggested that some LOXs from red algae attained their versatility by amalgamating functional domains of ancestral origin and unique amino acid mutations.
Asunto(s)
Evolución Molecular , Lipooxigenasa , Filogenia , Rhodophyta , Rhodophyta/genética , Rhodophyta/enzimología , Lipooxigenasa/genética , Lipooxigenasa/metabolismo , Lipooxigenasa/química , Secuencia de Aminoácidos , Simulación del Acoplamiento Molecular , Shewanella/enzimología , Shewanella/genética , Mutagénesis Sitio-DirigidaRESUMEN
Growth is a fundamental aspect of aquaculture breeding programs, pivotal for successful cultivation. Understanding the mechanisms that govern growth and development differences across various stages can significantly boost seedling production of economically valuable species, thereby enhancing aquaculture efficiency and advancing the aquaculture industry. Mytilus coruscus, a commercially vital marine bivalve, underscores this importance. To decipher the intricate molecular mechanisms dictating growth and developmental disparities in marine shellfish, we conducted transcriptome sequencing and meticulously analyzed gene expression variations and molecular pathways linked to growth traits in M. coruscus. This study delved into the molecular and gene expression variations across five larval development stages, with a specific focus on scrutinizing the differential expression patterns of growth-associated genes using RNA sequencing and quantitative real-time PCR analysis. A substantial number of genes-36,044 differentially expressed genes (DEGs)-exhibited significant differential expression between consecutive developmental stages. These DEGs were then categorized into multiple pathways (Q value < 0.05), including crucial pathways such as the spliceosome, vascular smooth muscle contraction, DNA replication, and apoptosis, among others. In addition, we identified two pivotal signaling pathways-the Hedgehog (Hh) signaling pathway and the TGF-beta (TGF-ß) signaling pathway-associated with the growth and development of M. coruscus larvae. Ten key growth-related genes were pinpointed, each playing crucial roles in molecular function and the regulation of growth traits in M. coruscus. These genes and pathways associated with growth provide deep insights into the molecular basis of physiological adaptation, metabolic processes, and growth variability in marine bivalves.
Asunto(s)
Proteínas Hedgehog , Mytilus , Animales , Proteínas Hedgehog/genética , Mytilus/genética , Larva/genética , Fitomejoramiento , Perfilación de la Expresión Génica , Factor de Crecimiento Transformador beta/genéticaRESUMEN
Pampus argenteus demonstrates a preference for Rhopilema esculentum as prey, yet the ramifications of consuming supplemental medusa on fish microbiota and metabolism remain elusive. To elucidate these effects, 300 juvenile fish were divided into two groups: control group (C, given commercial food only) and supplemental medusa (SM) group (given supplemental medusa + commercial feed). After 15 days, fish in the SM group exhibited a significant increase in fatness, the amylase activity in the intestine significantly increased, and the intestinal microvilli were arranged more neatly. The comprehensive approach involving 16S rRNA amplicon sequencing and metabolomics was employed, leading to the identification of five genera within the SM group, namely Lactococcus, Cohaesibacter, Maritalea, Sulfitobacter, and Carnobacterium. Functional prediction analysis of the microbiota indicated that the consumption of supplemental medusa facilitated processes such as glycolysis/gluconeogenesis and amino acid absorption. Metabolomics analysis revealed significant enrichment of 85 differential metabolites, most of them belonging to fatty acids and conjugates. These differential metabolites primarily participated in processes such as amino acid metabolism, fatty acid synthesis, and disease. Notably, the consumption of medusa resulted in a significant reduction in nine lysophospholipids associated with cardiovascular disease and inflammation. Pearson's correlation coefficient analysis revealed associations between specific microorganisms and metabolites, indicating that Cobetia, Weissella, and Macrococcus exhibited an increased abundance in the SM group, positively correlating with apocynin, 12-Hete, and delta 9-THC-d3. The indicator bacteria Psychrobacter reduced in the SM group, exhibiting a negative correlation with cystathionine (a compound involved in glutathione synthesis). Overall, the supplementation of medusa may confer a beneficial effect on the immunity of the fish. This study contributes to the theoretical framework for fish feed development.
RESUMEN
To explore the effect and mechanism of Gegen Qinlian Decoction(GQD) in inhibiting M1 polarization of macrophages under inflammatory hypoxia by simulating intestinal hypoxia microenvironment in vitro. A tri-gas incubator was used to simulate normal physiological hypoxia of the colon and inflammatory hypoxia microenvironments of ulcerative colitis(UC). RAW264.7 macrophages were divided into 18.5% O_(2 )(normoxia group), 4% O_2(physiological hypoxia group), and 1% O_2(inflammatory hypoxia group), and they were induced by lipopolysaccharide(LPS) for 24 h. M1 polarization was detected by flow cytometry. Under the condition of 1% inflammatory hypoxia, they were divided into blank group, model group, and GQD-containing serum low, medium, and high dose groups. Flow cytometry was used to detect M1 polarization marker CD86, and ELISA was used to detect the expression of tumor necrosis factor-α(TNF-α) and interleukin-1ß(IL-1ß) in cell supernatant. The mRNA expression of hypoxia-inducible factor-1α(HIF-1α), TNF-α, and IL-1ß was detected by qRT-PCR. Western blot was used to detect the expression of HIF-1α/nuclear transcription factor-κB(NF-κB) signaling pathway-related proteins. The nuclear translocation of NF-κB p65 was detected by immunofluorescence. The results showed that the positive rate of CD86 in the 1% O_2 group was the highest. Under the condition of 1% inflammatory hypoxia, compared with the blank group, the expression of CD86, TNF-α, IL-1ß, and HIF-1α in the model group increased. Compared with the model group, each group of GQD could reduce the expression of CD86, TNF-α, IL-1ß, and HIF-1α. Compared with the blank group, the protein expression of HIF-1α, NF-κB p65, p-IKKα/ß, and p-IκBα in the model group increased. Compared with the model group, the protein expression of HIF-1α, NF-κB p65, p-IKKα/ß, and p-IκBα in GQD groups was significantly decreased. Compared with the blank group, NF-κB p65 in the model group entered the nucleus significantly. Compared with the model group, the nuclear expression of NF-κB p65 was decreased in each GQD group. Studies have shown that GQD may protect the intestine by down-regulating the HIF-1α/NF-κB signaling pathway to inhibit M1 polarization of macrophages and secretion of related inflammatory factors under 1% inflammatory hypoxia.
Asunto(s)
Medicamentos Herbarios Chinos , Subunidad alfa del Factor 1 Inducible por Hipoxia , Interleucina-1beta , Macrófagos , Animales , Ratones , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo , Medicamentos Herbarios Chinos/farmacología , Células RAW 264.7 , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/genética , FN-kappa B/genética , FN-kappa B/metabolismo , Hipoxia/genética , Hipoxia/metabolismo , Transducción de Señal/efectos de los fármacosRESUMEN
Colonization of land from marine environments was a major transition for biological life on Earth, and intertidal adaptation was a key evolutionary event in the transition from marine- to land-based lifestyles. Multicellular intertidal red algae exhibit the earliest, systematic, and successful adaptation to intertidal environments, with Porphyra sensu lato (Bangiales, Rhodophyta) being a typical example. Here, a chromosome-level 49.67 Mb genome for Neoporphyra haitanensis comprising 9,496 gene loci is described based on metagenome-Hi-C-assisted whole-genome assembly, which allowed the isolation of epiphytic bacterial genome sequences from a seaweed genome for the first time. The compact, function-rich N. haitanensis genome revealed that ancestral lineages of red algae share common horizontal gene transfer events and close relationships with epiphytic bacterial populations. Specifically, the ancestor of N. haitanensis obtained unique lipoxygenase family genes from bacteria for complex chemical defense, carbonic anhydrases for survival in shell-borne conchocelis lifestyle stages, and numerous genes involved in stress tolerance. Combined proteomic, transcriptomic, and metabolomic analyses revealed complex regulation of rapid responses to intertidal dehydration/rehydration cycling within N. haitanensis. These adaptations include rapid regulation of its photosynthetic system, a readily available capacity to utilize ribosomal stores, increased methylation activity to rapidly synthesize proteins, and a strong anti-oxidation system to dissipate excess redox energy upon exposure to air. These novel insights into the unique adaptations of red algae to intertidal lifestyles inform our understanding of adaptations to intertidal ecosystems and the unique evolutionary steps required for intertidal colonization by biological life.
Asunto(s)
Proteómica , Rhodophyta , Aclimatación/genética , Adaptación Fisiológica/genética , Ecosistema , Rhodophyta/genéticaRESUMEN
In addition to being important primary productive forces in marine ecosystems, diatoms are also rich in bioactive substances such as triacylglycerol and fucoxanthin. However, little is known about the transcriptional mechanisms underlying the biosynthesis of these substances. In this study, we found that the heat shock transcription factor PtHSF1 positively regulated the synthesis of triacylglycerol and fucoxanthin in Phaeodactylum tricornutum. Overexpression of PtHSF1 could increase the contents of triacylglycerol and fucoxanthin and upregulate key enzyme genes involved in the triacylglycerol and fucoxanthin biosynthesis pathways. On the other hand, gene silencing of PtHSF1 reduced the contents of triacylglycerol and fucoxanthin and the expression of the key enzyme genes involved in the triacylglycerol and fucoxanthin biosynthesis pathways. Further biochemical analysis revealed that PtHSF1 upregulated glycerol-2-phosphate acyltransferase 3 (GPAT3) and 1-deoxy-d-xylulose 5-phosphate synthase (DXS) by directly binding to their promoters, while genetic analysis demonstrated that PtHSF1 acted upstream of GPAT3 and DXS to regulate triacylglycerol and fucoxanthin synthesis. Therefore, in addition to elucidating the regulation mechanisms underlying PtHSF1-mediated triacylglycerol and fucoxanthin synthesis, this study also provided a candidate target for metabolic engineering of triacylglycerol and fucoxanthin in P. tricornutum.
Asunto(s)
Aciltransferasas , Diatomeas , Triglicéridos/metabolismo , Factores de Transcripción del Choque Térmico/metabolismo , Aciltransferasas/metabolismo , Diatomeas/genética , Diatomeas/metabolismo , EcosistemaRESUMEN
The Lianjiang coast in the East China Sea is a typical subtropical marine ecosystem, and shellfish cultivation occupies almost all of the available tidal flats. Many studies have investigated the effects of shellfish cultivation on benthic organisms and sediments, while the impact of shellfish cultivation on plankton ecosystems is still poorly understood. This study investigated the biogeographical patterns of microeukaryotic communities from Lianjiang coastal waters in four seasons using 18S ribosomal RNA gene amplicon sequencing. Microeukaryotes were mainly comprised of Dinoflagellata, Diatomea, Arthropoda, Ciliophora, Chlorophyta, Protalveolata, Cryptophyceae, and Ochrophyta, and presented significant differences in three habitats (the aquaculture area, confluent area, and offshore area) and four seasons. Similarity percentage analysis revealed that Paracalanus parvus, Heterocapsa rotundata, Bestiolina similis, and five additional key taxa contributed to spatio-temporal differences. Seasonal environmental and spatial factors explained 27.47% of microeukaryotic community variation on average, with 11.11% of the variation shared. Environmental variables, particularly depth, pH, and nitrite concentration, were strongly associated with the microeukaryotic community compositions. The neutral community model further demonstrated that stochastic processes were sufficient in shaping substantial variation in microeukaryotic communities across four seasons, which may reveal the remaining unexplained microeukaryotic community variation. We further divided four seasons into the aquaculture stages and non-aquaculture stages, and speculated that aquaculture activities may increase the dispersal limitation of microeukaryotes in coastal waters, especially for the big bodied-microbes like Arthropoda. The results provide a better understanding of the biogeographical patterns, processes, and mechanisms of microeukaryotic communities near shellfish cultivation.
Asunto(s)
Artrópodos , Diatomeas , Dinoflagelados , Animales , Ecosistema , Plancton/genética , China , Dinoflagelados/genética , MariscosRESUMEN
Cryptorchidism irritant (CI) infection is a major problem in the culturing process of silver pomfret (Pampus argenteus), which can result in rapid and massive death. However, there is limited information available on the immune response of silver pomfret infected by CI. To address this gap, we sampled naturally infected fish and observed milky white translucent oval CI trophozoites on the gills, body surface, and fin rays. Histological analysis showed that CI infection led to vacuolation of epithelial cells and a decrease in blood cells in the gills. We also performed transcriptome profiling of the gill, kidney complex, and spleen, generating 399,616,194 clean reads that assembled into 101,228 unigenes, which were annotated based on public databases. We detected 14,369 differentially expressed genes, and selected several key immune-related genes for further validation using RT-qPCR. The Graft-versus-host pathway and Allograft rejection pathway were enriched in the gills, leading to inflammation and ulceration. CI infection activated the immune system, increasing levels of interleukin-1 beta and MHC class II antigen, and also activated innate and acquired immune genes in silver pomfret. Furthermore, we measured the activities of five immune-related enzymes (SOD, AKP, CAT, CSH and ACP), which all increased to varying degrees after CI infection. Our findings enhance our understanding of the immune response of fish to parasitic infection and may contribute to the development of strategies to prevent high mortality in CI-stimulated fish in aquaculture.