Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Haematologica ; 108(5): 1359-1373, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36005555

RESUMEN

Apart from the central role of the activated JAK/STAT signaling pathway, ASXL1 mutations are the most recurrent additional mutations in myeloproliferative neoplasms and occur much more commonly in myelofibrosis than in essential thrombocythemia and polycythemia vera. However, the mechanism of the association with ASXL1 mutations and bone marrow fibrosis remains unknown. Here, integrating our own data from patients with myeloproliferative neoplasms and a hematopoietic-specific Asxl1 deletion/Jak2V617F mouse model, we show that ASXL1 mutations are associated with advanced myeloproliferative neoplasm phenotypes and onset of myelofibrosis. ASXL1 mutations induce skewed monocyte/macrophage and neoplastic monocyte-derived fibrocyte differentiation, consequently they enhance inflammation and bone marrow fibrosis. Consistently, the loss of ASXL1 and JAK2V617F mutations in hematopoietic stem and progenitor cells leads to enhanced activation of polycomb group target genes, such as EGR1. The upregulation of EGR1, in turn, accounts for increased hematopoietic stem and progenitor cell commitment to the monocyte/macrophage lineage. Moreover, EGR1 induces the activation of TNFA and thereby further drives the differentiation of monocytes to fibrocytes. Accordingly, combined treatment with a TNFR antagonist and ruxolitinib significantly reduces fibrocyte production in vitro. Altogether, these findings demonstrate that ASXL1 mutations accelerate fibrocyte production and inflammation in myeloproliferative neoplasms via the EGR1-TNFA axis, explaining the cellular and molecular basis for bone marrow fibrosis and the proof-ofconcept for anti-fibrosis treatment.


Asunto(s)
Neoplasias de la Médula Ósea , Trastornos Mieloproliferativos , Policitemia Vera , Mielofibrosis Primaria , Animales , Ratones , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Janus Quinasa 2/genética , Mutación , Trastornos Mieloproliferativos/genética , Policitemia Vera/genética , Mielofibrosis Primaria/genética , Proteínas Represoras/genética
2.
Mater Struct ; 55(10): 243, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36447990

RESUMEN

Production of blended cements in which Portland cement is combined with supplementary cementitious materials (SCM) is an effective strategy for reducing the CO2 emissions during cement manufacturing and achieving sustainable concrete production. However, the high Al2O3 and SiO2 contents of SCM change the chemical composition of the main hydration product, calcium aluminate silicate hydrate (C-A-S-H). Herein, spectroscopic and structural data for C-A-S-H gels are reported in a large range of equilibration times from 3 months up to 2 years and Al/Si molar ratios from 0.001 to 0.2. The 27Al MAS NMR spectroscopy and thermogravimetric analysis indicate that in addition to the C-A-S-H phase, secondary phases such as strätlingite, katoite, Al(OH)3 and calcium aluminate hydrate are present at Al/Si ≥ 0.03 limiting the uptake of Al in C-A-S-H. More secondary phases are present at higher Al concentrations; their content decreases with equilibration time while more Al is taken up in the C-A-S-H phase. At low Al contents, Al concentrations decrease strongly with time indicating a slow equilibration, in contrast to high Al contents where a clear change in Al concentrations over time was not observed indicating that the equilibrium has been reached faster. The 27Al NMR studies show that tetrahedrally coordinated Al is incorporated in C-A-S-H and its amount increases with the amount of Al present in the solution. Supplementary Information: The online version contains supplementary material available at 10.1617/s11527-022-02080-x.

3.
Phys Chem Chem Phys ; 20(20): 13920-13933, 2018 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-29744517

RESUMEN

In this paper, first principles and reactive force field molecular dynamics were utilized to study the mechanical properties of tobermorite 9 Å, tobermorite 11 Å and jennite. These are essential minerals in cement chemistry. The mechanical properties calculated by the first-principle method match well with previous experimental results, pointing to the introduction of vdW dispersion-type forces as able to improve the precision. The calculated elastic constants of the three minerals confirm anisotropic mechanical behavior of the layered structures. The crystals jennite and tobermorite 9 demonstrate stronger mechanical behavior in the ab plane than the interlayer direction due to the presence of stable covalent "dreierketten" silicate chains. For tobermorite 11 Å, the Q3 silicate tetrahedrons bridging the neighboring calcium silicate sheets heal the weak interlayer structure and enhance the c-direction stiffness and cohesive strength. Furthermore, analysis of uniaxial tension by reactive force MD elucidated the chemical and mechanical responses of the atomic structures in loading resistance. The stress-strain relation of the layered mineral tensioned along b direction, showing the "strain hardening" region, where stress continues to increase past the yield stage. The strain hardening and ductility enhancement for the minerals is largely due to the ability of the silicate chains to first de-polymerize into short chains or separate tetrahedrons before the broken Q species re-polymerize to form branched networks and ring structures which are able to resist loading. For all three minerals, protons transfer to oxygen and water, resulting in the formation of Si-OH and Ca-OH groups during the strain hardening stage as Si-O-Si or Si-O-Ca bonds start to break and the calcium atoms and silicate morphology is rearranged. Hydrolysis therefore accelerates structural damage and contributes to weakening of mechanical properties in the interlayer direction. Increased tensile stress level in the tobermorite 11 Å can contribute to a greater extent of water damage.

4.
Phys Chem Chem Phys ; 20(20): 14174-14181, 2018 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-29756156

RESUMEN

Carbonation plays an indispensable role in engineering construction, embracing mineralization, CO2 sequestration and low pH induced corrosion, but the essential mechanism of carbonation occurring in calcium silicate hydrate or portlandite can hardly be interpreted. Observation on how carbonation proceeds at the nano scale is thus critical for a better understanding of its dynamics. Here, using electron microscopy combined with first-principles calculation, a new view on carbonation in the cement system is revealed, considering morphological diversity, growth mechanism and shape evolution. Two types of crystalline forms of calcium carbonate (i.e. cubic and spindle) under room conditions were observed and determined to be calcite, both experimentally and theoretically. The mechanism of morphological evolution of calcite in a cement system was demonstrated based on the theory of aqueous chemistry. The [Ca2+] to [CO3] ratio was the principle cause for the diversity in crystal morphology instead of the types of reactants (i.e. portlandite or calcium silicate hydrates). Excess calcium species in the solution could selectively adsorb on surfaces, resulting in an inhibitive effect on the growth of specific crystal faces, (1 0 4)calcite and (2 1 1[combining macron])calcite in this case. Furthermore, a relationship between relative ionic concentration and the length to diameter ratio was established to predict the shape transformation. This work makes it possible to explore the chemical nature of carbonation from a nano scope rather than being confined to the macroscopic carbonation of concrete.

5.
Bioresour Technol ; 397: 130475, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38387845

RESUMEN

To alleviate the inhibitory effects of salt and oil on food waste compost, the compost was inoculated with salt-tolerant and oil-degrading Bacillus safensis YM1. The YM1 inoculation could effectively improve compost maturation index. Compared with uninoculated group, the oil content and Cl- concentration in the 0.5% YM1-inoculated compost decreased significantly by 19.7% and 8.1%, respectively. The addition of the YM1 inoculant substantially altered the richness and composition of the microbial community during composting, as evidenced by the identification of 47 bacterial and 42 fungal biomarker taxa. The enrichment of some oil-degrading salt-tolerant microbes (Bacillus, Haloplasma, etc.) enhanced nutrient conversion, which is crucial for the improved maturity of the YM1 compost. This study demonstrated that YM1 could regulate both abiotic and biotic processes to improve high-salt and oily food waste composting, which may be an effective inoculant in the industrial-scale composting.


Asunto(s)
Bacillus , Compostaje , Eliminación de Residuos , Alimento Perdido y Desperdiciado , Alimentos , Suelo
6.
Leuk Res Rep ; 19: 100367, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36968263

RESUMEN

For a long time, FIP1L1::PDGFRA fusion seems to be the only cryptic rearrangement of myeloid/lymphoid neoplasm with tyrosine kinase gene fusions. Recently, with the wide application of RNA sequencing, more cryptic rearrangements of other TK genes have been identified, especially the PDGFRB. Here we report a case of myelodysplastic syndrome with severe thrombocytopenia. Conventional karyotype analysis revealed a t (5;19) (q33; p13.2) but no PDGFRB rearrangement was detected by the PDGFRB break-apart probe. The TNIP1::PDGFRB fusion was eventually found by RNA sequencing, leading us to treat with low-dose imatinib plus decitabine, and the patient achieved hematologic improvement and cytogenetic remission.

7.
Blood Sci ; 5(4): 258-268, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37941916

RESUMEN

Ruxolitinib is a cornerstone of management for some subsets of myeloproliferative neoplasms (MPNs); however, a considerable number of patients respond suboptimally. Here, we evaluated the efficacy of micheliolide (MCL), a natural guaianolide sesquiterpene lactone, alone or in combination with ruxolitinib in samples from patients with MPNs, JAK2V617F-mutated MPN cell lines, and a Jak2V617F knock-in mouse model. MCL effectively suppressed colony formation of hematopoietic progenitors in samples from patients with MPNs and inhibited cell growth and survival of MPN cell lines in vitro. Co-treatment with MCL and ruxolitinib resulted in greater inhibitory effects compared with treatment with ruxolitinib alone. Moreover, dimethylaminomicheliolide (DMAMCL), an orally available derivative of MCL, significantly increased the efficacy of ruxolitinib in reducing splenomegaly and cytokine production in Jak2V617F knock-in mice without evident effects on normal hematopoiesis. Importantly, MCL could target the Jak2V617F clone and reduce mutant allele burden in vivo. Mechanistically, MCL can form a stable covalent bond with cysteine residues of STAT3/5 to suppress their phosphorylation, thus inhibiting JAK/STAT signaling. Overall, these findings suggest that MCL is a promising drug in combination with ruxolitinib in the setting of suboptimal response to ruxolitinib.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA