Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Environ Sci Health B ; 58(4): 367-377, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37032599

RESUMEN

Isopyrazam (IPZ) is one of the broad-spectrum succinate dehydrogenase inhibitor fungicides (SDHIs). Although the potential bio-toxicity of SDHIs has been reported hourly, the specific effects focused on the cardiovascular system have remained unclear and piecemeal. Thus, we chose IPZ as a representative to observe the cardiovascular toxicity of SDHIs in zebrafish. Two types of transgenic zebrafish, Tg (cmlc2:GFP) and Tg (flk1:GFP) were used in this study. Healthy embryos at 6 hpf were exposed to IPZ solutions. The statistical data including survival rate, hatching rate, malformed rate, and morphological and functional parameters of the cardiovascular system at 48 hpf and 72 hpf demonstrated that IPZ could cause abnormalities and cardiovascular defects such as spinal curvature, dysmotility, pericardial edema, pericardial hemorrhage, and slowed heart rate, etc. At the same time, the activity of enzymes related to oxidative stress was altered with IPZ. Our results revealed that IPZ-induced cardiovascular toxicity and oxidative stress might be one of the underlying toxic mechanisms.


Asunto(s)
Sistema Cardiovascular , Fungicidas Industriales , Contaminantes Químicos del Agua , Animales , Pez Cebra , Embrión no Mamífero , Sistema Cardiovascular/química , Pirazoles/toxicidad , Fungicidas Industriales/toxicidad , Contaminantes Químicos del Agua/análisis
2.
Ecotoxicol Environ Saf ; 218: 112308, 2021 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-33975224

RESUMEN

Accumulating studies have revealed the toxicity of antimony (Sb) to soil-dwelling and aquatic organisms at the individual level. However, little is known about the neurotoxic effects of antimony and its underlying mechanisms. To assess this issue, we investigated the neurotoxicity of antimony (0, 200, 400, 600 and 800 mg/L) in zebrafish embryos. After exposure, zebrafish embryos showed abnormal phenotypes such as a shortened body length, morphological malformations, and weakened heart function. Behavioral experiments indicated that antimony caused neurotoxicity in zebrafish embryos, manifested in a decreased spontaneous movement frequency, delayed response to touch, and reduced movement distance. We also showed that antimony caused a decrease in acetylcholinesterase (AChE) levels in zebrafish embryos, along with decreased expression of neurofunctional markers such as gfap, nestin, mbp, and shha. Additionally, antimony significantly increased reactive oxygen species levels and significantly reduced glutathione (GSH) and superoxide dismutase (SOD) activity. In summary, our findings indicated that antimony can induce developmental toxicity and neurotoxicity in zebrafish embryos by affecting neurotransmitter systems and oxidative stress, thus altering behavior. These outcomes will advance our understanding of antimony-induced neurotoxicity, environmental problems, and health hazards.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA