Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nano Lett ; 23(3): 1030-1035, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36715359

RESUMEN

Advances in the development of aggregation-induced emission luminogens (AIEgens) depend on understanding how the molecular packing affects their luminescent properties and on making nanoparticles (NPs) with desired sizes. Although reported strategies have advanced the field, rational control of molecular packing and efficient fabrication of AIEgen NPs sub-5.5 nm in diameter remain pressing issues. Here we report a "freeze assembly" strategy, in which the diameter of AIEgen NPs can be precisely tuned from ∼3 nm to hundreds of nanometers, and a molecular packing in kinetically trapped states that are not easily captured by conventional assembly methods can be obtained, leading to tunable fluorescence emissions. Therefore, this study provides a significant tool to fabricate organic luminescent nanomaterials with diameters smaller than 5 nm, which is of critical importance for biomedical applications; meanwhile, tuning molecular packing in nanoparticles displaying different fluorescence may help to shed new light on the mechanism of AIEgens.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA