Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Biochem Biophys Res Commun ; 583: 93-99, 2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34735885

RESUMEN

Exosomes are secreted from a variety of cells and transmit parental cell-derived biomolecules, such as nucleic acids and proteins, to recipient cells in distant organs. In addition to their important roles in both physiological and pathological conditions, exosomes are expected to serve as natural drug carriers without any cytotoxicity, immunogenicity, or tumorigenicity. However, the use of exosomes as drug delivery tools is limited due to the low uptake efficiency of the target cells, insufficient release of the contents from the endosome to the cytosol, and possible adverse effects caused by the delivery to non-target cells. In the present study, we examined the effects of the modification of exosomes with carbonate apatite or a lactose-carrying polymer. Using newly generated monitoring exosomes that contain either firefly luciferase or fused mCherry/enhanced green fluorescent protein, we demonstrated that the modification of exosomes with carbonate apatite improved their release from the endosome into the cytosol in recipient cells. Meanwhile, the modification of exosomes with a lactose-carrying polymer enhanced the selective delivery to parenchymal hepatocytes. These modified exosomes may provide an efficient strategy for macromolecule therapy for incurable diseases that cannot be treated with conventional small-molecule compounds.

2.
Biochem Biophys Res Commun ; 528(3): 420-425, 2020 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-32505348

RESUMEN

Parenchymal hepatocytes are responsible for most of the metabolic functions of the liver, but exhibit distinct functional properties depending on their localization within the hepatic lobule. Cytochrome P450 oxidases represent a family of drug-metabolizing enzymes, which are expressed predominantly in hepatocytes localized in the centrilobular area (zone 3). The present study describes a unique transgenic mouse strain that distinguishes zone 3 hepatocytes from periportal zone 1 hepatocytes by the intensity of EGFP fluorescence. Both zone 1 and zone 3 hepatocytes isolated from these mice showed the same zone-specific gene expression patterns as in liver tissue in vivo. Experiments using primary cultures of hepatocytes indicated that a combination of low oxygen concentration and activation of Wnt/ß-catenin signaling maintained the expression of zone 3-specific P450 drug-metabolizing enzymes, which was characterized by their susceptibility to acetaminophen-induced mitochondrial dysfunction. These zone-specific hepatocytes provide a useful system in the research area of liver pathophysiology and drug development.


Asunto(s)
Hepatocitos/metabolismo , NADPH-Ferrihemoproteína Reductasa/metabolismo , Acetaminofén/toxicidad , Animales , Separación Celular , Células Cultivadas , Citometría de Flujo , Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Hepatocitos/citología , Hepatocitos/efectos de los fármacos , Hígado/anatomía & histología , Hígado/citología , Hígado/metabolismo , Ratones , Ratones Transgénicos , Mitocondrias Hepáticas/metabolismo , NADPH-Ferrihemoproteína Reductasa/genética , Oxígeno/metabolismo , Vía de Señalización Wnt/efectos de los fármacos
3.
Stem Cells ; 37(1): 89-101, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30270488

RESUMEN

Granulocyte colony stimulating factor (G-CSF) has been reported to ameliorate impaired liver function in patients with advanced liver diseases through mobilization and proliferation of hepatic progenitor cells (HPCs). However, the underlying mechanisms remain unknown. We previously showed that G-CSF treatment increased the number of bone marrow (BM)-derived cells migrating to the fibrotic liver following repeated carbon tetrachloride (CCl4 ) injections into mice. In this study, we identified opioid growth factor receptor-like 1 (OGFRL1) as a novel BM cell-derived accelerator of fibrotic liver regeneration in response to G-CSF treatment. Endogenous Ogfrl1 was highly expressed in the hematopoietic organs such as the BM and spleen, whereas the liver contained a relatively small amount of Ogfrl1 mRNA. Among the peripheral blood cells, monocytes were the major sources of OGFRL1. Endogenous Ogfrl1 expression in both the peripheral blood monocytes and the liver was decreased following repeated CCl4 injections. An intrasplenic injection of cells overexpressing OGFRL1 into CCl4 -treated fibrotic mice increased the number of HPC and stimulated proliferation of hepatic parenchymal cells after partial resection of the fibrotic liver. Furthermore, overexpression of OGFRL1 in cultured HPC accelerated their differentiation as estimated by increased expression of liver-specific genes such as hepatocyte nuclear factor 4α, cytochrome P450, and fatty acid binding protein 1, although it did not affect the colony forming ability of HPC. These results indicate a critical role of OGFRL1 in the mobilization and differentiation of HPC in the fibrotic liver, and administration of OGFRL1-expressing cells may serve as a potential regenerative therapy for advanced liver fibrosis. Stem Cells 2019;37:89-101.


Asunto(s)
Movilización de Célula Madre Hematopoyética/métodos , Cirrosis Hepática/genética , Cirrosis Hepática/terapia , Regeneración Hepática/genética , Medicina Regenerativa/métodos , Células Madre/metabolismo , Animales , Diferenciación Celular , Humanos , Masculino , Ratones , Transfección
4.
Am J Pathol ; 186(10): 2751-60, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27634343

RESUMEN

The onset and/or growth of breast tumor are controlled, at least in part, by estrogen. Therefore, to prevent the development of breast tumor, estrogen-dependent proliferation of mammary epithelial cells during pregnancy needs to be suppressed once the mammary gland is fully developed to enable lactation. However, the underlying molecular mechanisms remain unknown. Nrk is an X-linked protein serine/threonine kinase in the germinal center kinase family. Herein, we demonstrate a frequent occurrence of breast tumors in homozygous and heterozygous Nrk mutant mice that have experienced pregnancy/parturition. The tumors never developed in the mutant mice without a history of pregnancy/parturition. They exhibited histopathological features of noninvasive tubular adenocarcinoma, and expressed estrogen receptor α. At late gestation when estrogen receptor α expression was significantly reduced in the wild-type mammary gland, grossly normal mammary glands in the pregnant Nrk mutant mice occasionally contained hyperplastic foci continuously expressing the receptor. Consistently, Nrk expression was induced in the wild-type mammary gland at this period of pregnancy. On the other hand, the pregnant Nrk mutant mice also showed elevated blood estrogen levels at late gestation. We suggest that Nrk suppresses the excessive proliferation of mammary epithelial cells during pregnancy, and the impairment of this regulatory system leads to frequent occurrence of breast tumor in Nrk mutant mice.


Asunto(s)
Neoplasias de la Mama/enzimología , Péptidos y Proteínas de Señalización Intracelular/genética , Neoplasias Mamarias Experimentales/enzimología , Proteínas Serina-Treonina Quinasas/genética , Animales , Mama/metabolismo , Mama/patología , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Regulación hacia Abajo , Células Epiteliales/metabolismo , Células Epiteliales/patología , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Estrógenos/sangre , Femenino , Genes Ligados a X/genética , Quinasas del Centro Germinal , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lactancia , Células MCF-7 , Masculino , Neoplasias Mamarias Experimentales/genética , Neoplasias Mamarias Experimentales/patología , Ratones , Ratones Transgénicos , Mutación , Embarazo , Proteínas Serina-Treonina Quinasas/metabolismo
5.
Life Sci Alliance ; 5(5)2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35181633

RESUMEN

The processing of type I procollagen is essential for fibril formation; however, the steps involved remain controversial. We constructed a live cell imaging system by inserting fluorescent proteins into type I pre-procollagen α1. Based on live imaging and immunostaining, the C-propeptide is intracellularly cleaved at the perinuclear region, including the endoplasmic reticulum, and subsequently accumulates at the upside of the cell. The N-propeptide is also intracellularly cleaved, but is transported with the repeating structure domain of collagen into the extracellular region. This system makes it possible to detect relative increases and decreases in collagen secretion in a high-throughput manner by assaying fluorescence in the culture medium, and revealed that the rate-limiting step for collagen secretion occurs after the synthesis of procollagen. In the present study, we identified a defect in procollagen processing in activated hepatic stellate cells, which secrete aberrant collagen fibrils. The results obtained demonstrated the intracellular processing of type I procollagen, and revealed a link between dysfunctional processing and diseases such as hepatic fibrosis.


Asunto(s)
Colágeno , Procolágeno , Colágeno/metabolismo , Retículo Endoplásmico/metabolismo , Procolágeno/metabolismo
6.
Regen Ther ; 18: 223-230, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34377752

RESUMEN

INTRODUCTION: Artificial dermis is an effective therapeutic method for full-thickness dermal defects. However, the currently available artificial dermis made of porcine or bovine type I collagen has several limitations such as incomplete epithelialization and delayed migration of fibrogenic and angiogenic cells into the graft. We previously developed a composite dermal graft containing a mixture of moon jellyfish collagen and porcine type I collagen, and reported its stimulatory effect on both the re-epithelialization of the epidermis and the migration of fibrogenic and angiogenic cells into the graft. In the present study, we examined whether the same effect was observed by administering jellyfish collagen solution externally onto an artificial dermal graft made of bovine type I collagen. METHODS: We used a 6 mm full-thickness wound defect model. Moon jellyfish collagen was prepared as a concentrated 0.5% solution and dripped externally onto a transplanted artificial dermal graft made of bovine type I collagen. Wound repair and long-term dermal tissue remodeling were compared between mice administered jellyfish collagen solution on the bovine collagen graft and those transplanted with a composite dermal graft containing the same amounts of jellyfish and bovine collagens. The stimulatory effect of jellyfish collagen solution was also evaluated using diabetic dB/dB mice. RESULTS: External administration of jellyfish collagen solution onto the bovine collagen graft significantly accelerated wound closure compared to control saline. It also decreased the number of inflammatory cells infiltrating the wound and suppressed absorption of the transplanted graft, as well as reduced subsequent scar formation. Furthermore, external administration of jellyfish collagen solution onto the bovine collagen graft improved the delayed wound healing in diabetic model mice, and this effect was superior to that of the currently used basic fibroblast growth factor. CONCLUSIONS: External administration of moon jellyfish collagen solution onto a bovine collagen graft significantly accelerated physiological wound healing and prevented excessive scar formation. It also improved wound closure in diabetic model mice, confirming its therapeutic application for intractable skin ulcers caused by impaired wound healing.

7.
Adv Wound Care (New Rochelle) ; 9(6): 295-311, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32286206

RESUMEN

Background and Objective: Impaired dermal wound healing represents a major medical issue in today's aging populations. Granulation tissue formation in the dermis and reepithelization of the epidermis are both important and necessary for proper wound healing. Although a number of artificial dermal grafts have been used to treat full-thickness dermal loss in humans, they do not induce reepithelization of the wound, requiring subsequent epithelial transplantation. In the present study, we sought a novel biomaterial that accelerates the wound healing process. Approach: We prepared a composite biomaterial made of jellyfish and porcine collagens and developed a hybrid-type dermal graft that composed of the upper layer film and the lower layer sponge made of this composite biomaterial. Its effect on dermal wound healing was examined using a full-thickness excisional wound model. Structural properties of the dermal graft and histological features of the regenerating skin tissue were characterized by electron microscopic observation and immunohistological examination, respectively. Results: The composite biomaterial film stimulated migration of keratinocytes, leading to prompt reepithelization. The regenerating epithelium consisted of two distinct cell populations: keratin 5-positive basal keratinocytes and more differentiated cells expressing tight junction proteins such as claudin-1 and occludin. At the same time, the sponge made of the composite biomaterial possessed a significantly enlarged intrinsic space and enhanced infiltration of inflammatory cells and fibroblasts, accelerating granulation tissue formation. Innovation: This newly developed composite biomaterial may serve as a dermal graft that accelerates wound healing in various pathological conditions. Conclusion: We have developed a novel dermal graft composed of jellyfish and porcine collagens that remarkably accelerates the wound healing process.


Asunto(s)
Materiales Biocompatibles/farmacología , Colágeno/farmacología , Dermis/patología , Tejido de Granulación/fisiología , Cicatrización de Heridas/efectos de los fármacos , Animales , Materiales Biocompatibles/administración & dosificación , Diferenciación Celular , Movimiento Celular/fisiología , Colágeno/metabolismo , Modelos Animales de Enfermedad , Células Epiteliales/efectos de los fármacos , Células Epiteliales/fisiología , Femenino , Fibroblastos , Queratina-5/metabolismo , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica/métodos , Regeneración , Escifozoos , Piel/crecimiento & desarrollo , Piel/ultraestructura , Trasplante de Piel/métodos , Porcinos , Proteínas de Uniones Estrechas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA