Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 502(7471): 385-8, 2013 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-24056935

RESUMEN

Nucleic-acid-binding proteins are generally viewed as either specific or nonspecific, depending on characteristics of their binding sites in DNA or RNA. Most studies have focused on specific proteins, which identify cognate sites by binding with highest affinities to regions with defined signatures in sequence, structure or both. Proteins that bind to sites devoid of defined sequence or structure signatures are considered nonspecific. Substrate binding by these proteins is poorly understood, and it is not known to what extent seemingly nonspecific proteins discriminate between different binding sites, aside from those sequestered by nucleic acid structures. Here we systematically examine substrate binding by the apparently nonspecific RNA-binding protein C5, and find clear discrimination between different binding site variants. C5 is the protein subunit of the transfer RNA processing ribonucleoprotein enzyme RNase P from Escherichia coli. The protein binds 5' leaders of precursor tRNAs at a site without sequence or structure signatures. We measure functional binding of C5 to all possible sequence variants in its substrate binding site, using a high-throughput sequencing kinetics approach (HITS-KIN) that simultaneously follows processing of thousands of RNA species. C5 binds different substrate variants with affinities varying by orders of magnitude. The distribution of functional affinities of C5 for all substrate variants resembles affinity distributions of highly specific nucleic acid binding proteins. Unlike these specific proteins, C5 does not bind its physiological RNA targets with the highest affinity, but with affinities near the median of the distribution, a region that is not associated with a sequence signature. We delineate defined rules governing substrate recognition by C5, which reveal specificity that is hidden in cellular substrates for RNase P. Our findings suggest that apparently nonspecific and specific RNA-binding modes may not differ fundamentally, but represent distinct parts of common affinity distributions.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , ARN de Transferencia/metabolismo , Ribonucleasa P/metabolismo , Regiones no Traducidas 5'/genética , Secuencia de Bases , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Cinética , Conformación de Ácido Nucleico , Precursores del ARN/química , Precursores del ARN/genética , Precursores del ARN/metabolismo , ARN Bacteriano/química , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN de Transferencia/química , ARN de Transferencia/genética , ARN de Transferencia de Metionina/química , ARN de Transferencia de Metionina/genética , ARN de Transferencia de Metionina/metabolismo , Ribonucleasa P/química , Ribonucleasa P/genética , Especificidad por Sustrato
2.
J Biol Chem ; 288(12): 8342-8354, 2013 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-23362254

RESUMEN

A single enzyme, ribonuclease P (RNase P), processes the 5' ends of tRNA precursors (ptRNA) in cells and organelles that carry out tRNA biosynthesis. This substrate population includes over 80 different competing ptRNAs in Escherichia coli. Although the reaction kinetics and molecular recognition of a few individual model substrates of bacterial RNase P have been well described, the competitive substrate kinetics of the enzyme are comparatively unexplored. To understand the factors that determine how different ptRNA substrates compete for processing by E. coli RNase P, we compared the steady state reaction kinetics of two ptRNAs that differ at sequences that are contacted by the enzyme. For both ptRNAs, substrate cleavage is fast relative to dissociation. As a consequence, V/K, the rate constant for the reaction at limiting substrate concentrations, reflects the substrate association step for both ptRNAs. Reactions containing two or more ptRNAs follow simple competitive alternative substrate kinetics in which the relative rates of processing are determined by ptRNA concentration and their V/K. The relative V/K values for eight different ptRNAs, which were selected to represent the range of structure variation at sites contacted by RNase P, were determined by internal competition in reactions in which all eight substrates were present simultaneously. The results reveal a relatively narrow range of V/K values, suggesting that rates of ptRNA processing by RNase P are tuned for uniform specificity and consequently optimal coupling to precursor biosynthesis.


Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Ribonucleasa P/química , Algoritmos , Secuencia de Bases , Unión Competitiva , Cinética , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Unión Proteica , División del ARN , Procesamiento Postranscripcional del ARN , ARN Bacteriano/química , ARN de Transferencia/química
3.
Anal Biochem ; 467: 54-61, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25173512

RESUMEN

Studies of RNA recognition and catalysis typically involve measurement of rate constants for reactions of individual RNA sequence variants by fitting changes in substrate or product concentration to exponential or linear functions. A complementary approach is determination of relative rate constants by internal competition, which involves quantifying the time-dependent changes in substrate or product ratios in reactions containing multiple substrates. Here, we review approaches for determining relative rate constants by analysis of both substrate and product ratios and illustrate their application using the in vitro processing of precursor transfer RNA (tRNA) by ribonuclease P as a model system. The presence of inactive substrate populations is a common complicating factor in analysis of reactions involving RNA substrates, and approaches for quantitative correction of observed rate constants for these effects are illustrated. These results, together with recent applications in the literature, indicate that internal competition offers an alternate method for analyzing RNA processing kinetics using standard molecular biology methods that directly quantifies substrate specificity and may be extended to a range of applications.


Asunto(s)
Escherichia coli/metabolismo , Precursores del ARN/química , Procesamiento Postranscripcional del ARN , ARN Bacteriano/química , ARN de Transferencia/química , Ribonucleasa P/metabolismo , Emparejamiento Base , Secuencia de Bases , Catálisis , Escherichia coli/genética , Técnicas In Vitro , Datos de Secuencia Molecular , Precursores del ARN/metabolismo , ARN Bacteriano/metabolismo , ARN de Transferencia/metabolismo , Especificidad por Sustrato , Termodinámica
4.
Biochemistry ; 48(30): 7342-51, 2009 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-19594111

RESUMEN

We have been examining the mechanism and kinetics of the interactions of a selected set of peptides with phospholipid membranes in a quantitative manner. This set was chosen to cover a broad range of physical-chemical properties and cell specificities. Mastoparan (masL) and mastoparan X (masX) are two similar peptides from the venoms of the wasps Vespula lewisii and Vespa xanthoptera, respectively, and were chosen to complete the set. The rate constants for masX association with and dissociation from membranes are reported here for the first time. The kinetics of dye efflux induced by both mastoparans from phospholipid vesicles were also examined and quantitatively analyzed. We find that masL and masX follow the same graded kinetic model that we previously proposed for the cell-penetrating peptide transportan 10 (tp10), but with different parameters. This comparison is relevant because tp10 is derived from masL by addition of a mostly nonpolar segment of seven residues at the N-terminus. Tp10 is more active than the mastoparans toward phosphatidylcholine vesicles, but the mastoparans are more sensitive to the effect of anionic lipids. Furthermore, the Gibbs free energies of binding and insertion of the peptides calculated using the Wimley-White transfer scales are in good agreement with the values derived from our experimental data and are useful for understanding peptide behavior.


Asunto(s)
Galanina/química , Péptidos , Isoformas de Proteínas/química , Proteínas Recombinantes de Fusión/química , Venenos de Avispas/química , Avispas/química , Secuencia de Aminoácidos , Animales , Permeabilidad de la Membrana Celular/fisiología , Fluoresceínas/química , Colorantes Fluorescentes/química , Galanina/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intercelular , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Lípidos de la Membrana/química , Modelos Moleculares , Datos de Secuencia Molecular , Naftalenos/química , Péptidos/química , Péptidos/metabolismo , Fosfolípidos/química , Isoformas de Proteínas/metabolismo , Compuestos de Piridinio/química , Proteínas Recombinantes de Fusión/metabolismo , Termodinámica , Venenos de Avispas/metabolismo
5.
J Mol Biol ; 395(5): 1019-37, 2010 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-19917291

RESUMEN

The RNA subunit of the ribonucleoprotein enzyme ribonuclease P (RNase P (P RNA) contains the active site, but binding of Escherichia coli RNase P protein (C5) to P RNA increases the rate constant for catalysis for certain pre-tRNA substrates up to 1000-fold. Structure-swapping experiments between a substrate that is cleaved slowly by P RNA alone (pre-tRNA(f-met605)) and one that is cleaved quickly (pre-tRNA(met608)) pinpoint the characteristic C(+1)/A(+72) base pair of initiator tRNA(f-met) as the sole determinant of slow RNA-alone catalysis. Unlike other substrate modifications that slow RNA-alone catalysis, the presence of a C(+1)/A(+72) base pair reduces the rate constant for processing at both correct and miscleavage sites, indicating an indirect but nonetheless important role in catalysis. Analysis of the Mg(2)(+) dependence of apparent catalytic rate constants for pre-tRNA(met608) and a pre-tRNA(met608) (+1)C/(+72)A mutant provides evidence that C5 promotes rate enhancement primarily by compensating for the decrease in the affinity of metal ions important for catalysis engendered by the presence of the CA pair. Together, these results support and extend current models for RNase P substrate recognition in which contacts involving the conserved (+1)G/C(+72) pair of tRNA stabilize functional metal ion binding. Additionally, these observations suggest that C5 protein has evolved to compensate for tRNA variation at positions important for binding to P RNA, allowing for tRNA specialization.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Precursores del ARN/metabolismo , ARN Bacteriano/metabolismo , Ribonucleasa P/metabolismo , Emparejamiento Base , Secuencia de Bases , Catálisis , Secuencia de Consenso , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Cinética , Magnesio/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Conformación Proteica , Precursores del ARN/química , Precursores del ARN/genética , Procesamiento Postranscripcional del ARN , ARN Bacteriano/química , ARN Bacteriano/genética , Ribonucleasa P/química , Ribonucleasa P/genética , Especificidad por Sustrato , Termodinámica
6.
Biochemistry ; 47(9): 3051-60, 2008 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-18260641

RESUMEN

The kinetics and thermodynamics of binding of transportan 10 (tp10) and four of its variants to phospholipid vesicles, and the kinetics of peptide-induced dye efflux, were compared. Tp10 is a 21-residue, amphipathic, cationic, cell-penetrating peptide similar to helical antimicrobial peptides. The tp10 variants examined include amidated and free peptides, and replacements of tyrosine by tryptophan. Carboxy-terminal amidation or substitution of tryptophan for tyrosine enhance binding and activity. The Gibbs energies of peptide binding to membranes determined experimentally and calculated from the interfacial hydrophobicity scale are in good agreement. The Gibbs energy for insertion into the bilayer core was calculated using hydrophobicity scales of residue transfer from water to octanol and to the membrane/water interface. Peptide-induced efflux becomes faster as the Gibbs energies for binding and insertion of the tp10 variants decrease. If anionic lipids are included, binding and efflux rate increase, as expected because all tp10 variants are cationic and an electrostatic component is added. Whether the most important effect of peptide amidation is the change in charge or an enhancement of helical structure, however, still needs to be established. Nevertheless, it is clear that the changes in efflux rate reflect the differences in the thermodynamics of binding and insertion of the free and amidated peptide groups.


Asunto(s)
Galanina/química , Fosfolípidos/química , Proteínas Recombinantes de Fusión/química , Termodinámica , Venenos de Avispas/química , Secuencia de Aminoácidos , Galanina/genética , Galanina/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Modelos Biológicos , Mutación , Unión Proteica , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Venenos de Avispas/genética , Venenos de Avispas/metabolismo
7.
Biophys J ; 92(7): 2434-44, 2007 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-17218466

RESUMEN

The mechanism of the interaction between the cell-penetrating peptide transportan 10 (tp10) and phospholipid membranes was investigated. Tp10 induces graded release of the contents of phospholipid vesicles. The kinetics of peptide association with vesicles and peptide-induced dye efflux from the vesicle lumen were examined experimentally by stopped-flow fluorescence. The experimental kinetics were analyzed by directly fitting to the data the numerical solution of mathematical kinetic models. A very good global fit was obtained using a model in which tp10 binds to the membrane surface and perturbs it because of the mass imbalance thus created across the bilayer. The perturbed bilayer state allows peptide monomers to insert transiently into its hydrophobic core and cross the membrane, until the peptide mass imbalance is dissipated. In that transient state tp10 "catalyzes" dye efflux from the vesicle lumen. These conclusions are consistent with recent reports that used molecular dynamics simulations to study the interactions between peptide antimicrobials and phospholipid bilayers. A thermodynamic analysis of tp10 binding and insertion in the bilayer using water-membrane transfer hydrophobicity scales is entirely consistent with the model proposed. A small bilayer perturbation is both necessary and sufficient to achieve very good agreement with the model, indicating that the role of the lipids must be included to understand the mechanism of cell-penetrating and antimicrobial peptides.


Asunto(s)
Galanina/química , Membrana Dobles de Lípidos/química , Liposomas/química , Modelos Químicos , Modelos Moleculares , Fosfolípidos/química , Transporte de Proteínas , Proteínas Recombinantes de Fusión/química , Venenos de Avispas/química , Simulación por Computador , Difusión , Fluidez de la Membrana , Permeabilidad , Porosidad
8.
Biophys J ; 91(6): 2184-97, 2006 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-16798807

RESUMEN

The kinetics of carboxyfluorescein efflux induced by the amphipathic peptide delta-lysin from vesicles of porcine brain sphingomyelin (BSM), 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC), and cholesterol (Chol) were investigated as a function of temperature and composition. Sphingomyelin (SM)/Chol mixtures form a liquid-ordered (L(o)) phase whereas POPC exists in the liquid-disordered (L(d)) phase at ambient temperature. delta-Lysin binds strongly to L(d) and poorly to L(o) phase. In BSM/Chol/POPC vesicles the rate of carboxyfluorescein efflux induced by delta-lysin increases as the POPC content decreases. This is explained by the increase of delta-lysin concentration in L(d) domains, which enhances membrane perturbation by the peptide. Phase separations in the micrometer scale have been observed by fluorescence microscopy in SM/Chol/POPC mixtures for some SM, though not for BSM. Thus, delta-lysin must detect heterogeneities (domains) in BSM/Chol/POPC on a much smaller scale. Advantage was taken of the inverse variation of the efflux rate with the L(d) content of BSM/Chol/POPC vesicles to estimate the L(d) fraction in those mixtures. These results were combined with differential scanning calorimetry to obtain the BSM/Chol/POPC phase diagram as a function of temperature.


Asunto(s)
Proteínas Bacterianas/química , Colesterol/química , Fosfatidilcolinas/química , Esfingomielinas/química , Animales , Proteínas Bacterianas/metabolismo , Rastreo Diferencial de Calorimetría , Colesterol/metabolismo , Membrana Eritrocítica/metabolismo , Fluoresceínas , Colorantes Fluorescentes , Proteínas Hemolisinas , Humanos , Técnicas In Vitro , Membrana Dobles de Lípidos/química , Permeabilidad , Transición de Fase , Fosfatidilcolinas/metabolismo , Esfingomielinas/metabolismo , Porcinos , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA