Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Genomics ; 116(2): 110784, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38199265

RESUMEN

Bacterial wilt (BW) caused by Ralstonia solanacearum is a globally prevalent bacterial soil-borne disease. In this study, transcriptome sequencing were subjected to roots after infection with the R. solanacearum in the resistant and susceptible tobacco variety. DEGs that responded to R. solanacearum infection in both resistant and susceptible tobacco contributed to pectinase and peroxidase development and were enriched in plant hormone signal transduction, signal transduction and MAPK signalling pathway KEGG terms. Core DEGs in the resistant tobacco response to R. solanacearum infection were enriched in cell wall, membrane, abscisic acid and ethylene terms. qRT-PCR indicated that Nitab4.5_0004899g0110, Nitab4.5_0004234g0080 and Nitab4.5_0001439g0050 contributed to the response to R. solanacearum infection in different resistant and susceptible tobacco. Silencing the p450 gene Nitab4.5_0001439g0050 reduced tobacco resistance to bacterial wilt. These results improve our understanding of the molecular mechanism of BW resistance in tobacco and solanaceous plants.


Asunto(s)
Ralstonia solanacearum , Ralstonia solanacearum/genética , Perfilación de la Expresión Génica , Reguladores del Crecimiento de las Plantas/farmacología , Ácido Abscísico , Nicotiana/genética , Silenciador del Gen , Resistencia a la Enfermedad/genética
2.
Genomics ; 116(3): 110823, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38492820

RESUMEN

The TIFY gene family plays an essential role in plant development and abiotic and biotic stress responses. In this study, genome-wide identification of TIFY members in tobacco and their expression pattern analysis in response to Ralstonia solanacearum infection were performed. A total of 33 TIFY genes were identified, including the TIFY, PPD, ZIM&ZML and JAZ subfamilies. Promoter analysis results indicated that a quantity of light-response, drought-response, SA-response and JA-response cis-elements exist in promoter regions. The TIFY gene family exhibited expansion and possessed gene redundancy resulting from tobacco ploidy change. In addition, most NtTIFYs equivalently expressed in roots, stems and leaves, while NtTIFY1, NtTIFY4, NtTIFY18 and NtTIFY30 preferentially expressed in roots. The JAZ III clade showed significant expression changes after inoculation with R. solanacearum, and the expression of NtTIFY7 in resistant varieties, compared with susceptible varieties, was more stably induced. Furthermore, NtTIFY7-silenced plants, compared with the control plants, were more susceptible to bacterial wilt. These results lay a foundation for exploring the evolutionary history of TIFY gene family and revealing gene function of NtTIFYs in tobacco bacterial wilt resistance.


Asunto(s)
Familia de Multigenes , Nicotiana , Enfermedades de las Plantas , Proteínas de Plantas , Ralstonia solanacearum , Ralstonia solanacearum/genética , Nicotiana/genética , Nicotiana/microbiología , Nicotiana/metabolismo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Resistencia a la Enfermedad/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Filogenia , Regiones Promotoras Genéticas
3.
Biochem Biophys Res Commun ; 690: 149256, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37992525

RESUMEN

14-3-3 proteins play important roles in plant metabolism and stress response. Tomato 14-3-3 proteins, SlTFT4 and SlTFT7, serve as hubs of plant immunity and are targeted by some pathogen effectors. Ralstonia solanacearum with more than 70 type Ⅲ effectors (T3Es) is one of the most destructive plant pathogens. However, little is known on whether R. solanacearum T3Es target SlTFT4 and SlTFT7 and hence interfere with plant immunity. We first detected the associations of SlTFT4/SlTFT7 with R. solanacearum T3Es by luciferase complementation assay, and then confirmed the interactions by yeast two-hybrid approach. We demonstrated that 22 Ralstonia T3Es were associated with both SlTFT4 and SlTFT7, and five among them suppressed the hypersensitive response induced by MAPKKKα, a protein kinase which associated with SlTFT4/SlTFT7. We further demonstrated that suppression of MAPKKKα-induced HR and plant basal defense by the T3E RipAC depend on its association with 14-3-3 proteins. Our findings firstly demonstrate that R. solanacearum T3Es can manipulate plant immunity by targeting 14-3-3 proteins, SlTFT4 and SlTFT7, providing new insights into plant-R. solanacearum interactions.


Asunto(s)
Proteínas 14-3-3 , Ralstonia solanacearum , Proteínas 14-3-3/metabolismo , Proteínas Bacterianas/metabolismo , Inmunidad de la Planta , Ralstonia solanacearum/fisiología , Enfermedades de las Plantas , Proteínas de Plantas/metabolismo
4.
BMC Plant Biol ; 24(1): 67, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38262958

RESUMEN

BACKGROUND: Tobacco mosaic virus (TMV) is a widely distributed viral disease that threatens many vegetables and horticultural species. Using the resistance gene N which induces a hypersensitivity reaction, is a common strategy for controlling this disease in tobacco (Nicotiana tabacum L.). However, N gene-mediated resistance has its limitations, consequently, identifying resistance genes from resistant germplasms and developing resistant cultivars is an ideal strategy for controlling the damage caused by TMV. RESULTS: Here, we identified highly TMV-resistant tobacco germplasm, JT88, with markedly reduced viral accumulation following TMV infection. We mapped and cloned two tobamovirus multiplication protein 2A (TOM2A) homeologs responsible for TMV replication using an F2 population derived from a cross between the TMV-susceptible cultivar K326 and the TMV-resistant cultivar JT88. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (CRISPR/Cas9)-mediated loss-of-function mutations of two NtTOM2A homeologs almost completely suppressed TMV replication; however, the single gene mutants showed symptoms similar to those of the wild type. Moreover, NtTOM2A natural mutations were rarely detected in 577 tobacco germplasms, and CRISPR/Cas9-mediated variation of NtTOM2A led to shortened plant height, these results indicating that the natural variations in NtTOM2A were rarely applied in tobacco breeding and the NtTOM2A maybe has an impact on growth and development. CONCLUSIONS: The two NtTOM2A homeologs are functionally redundant and negatively regulate TMV resistance. These results deepen our understanding of the molecular mechanisms underlying TMV resistance in tobacco and provide important information for the potential application of NtTOM2A in TMV resistance breeding.


Asunto(s)
Virus del Mosaico del Tabaco , Tobamovirus , Nicotiana , Fitomejoramiento , Horticultura
5.
BMC Plant Biol ; 24(1): 583, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38898384

RESUMEN

BACKGROUND: Leaf morphology plays a crucial role in photosynthetic efficiency and yield potential in crops. Cigar tobacco plants, which are derived from common tobacco (Nicotiana tabacum L.), possess special leaf characteristics including thin and delicate leaves with few visible veins, making it a good system for studying the genetic basis of leaf morphological characters. RESULTS: In this study, GWAS and QTL mapping were simultaneously performed using a natural population containing 185 accessions collected worldwide and an F2 population consisting of 240 individuals, respectively. A total of 26 QTLs related to leaf morphological traits were mapped in the F2 population at three different developmental stages, and some QTL intervals were repeatedly detected for different traits and at different developmental stages. Among the 206 significant SNPs identified in the natural population using GWAS, several associated with the leaf thickness phenotype were co-mapped via QTL mapping. By analyzing linkage disequilibrium and transcriptome data from different tissues combined with gene functional annotations, 7 candidate genes from the co-mapped region were identified as the potential causative genes associated with leaf thickness. CONCLUSIONS: These results presented a valuable cigar tobacco resource showing the genetic diversity regarding its leaf morphological traits at different developmental stages. It also provides valuable information for novel genes and molecular markers that will be useful for further functional verification and for molecular breeding of leaf morphological traits in crops in the future.


Asunto(s)
Mapeo Cromosómico , Estudio de Asociación del Genoma Completo , Nicotiana , Hojas de la Planta , Sitios de Carácter Cuantitativo , Nicotiana/genética , Nicotiana/anatomía & histología , Nicotiana/crecimiento & desarrollo , Hojas de la Planta/anatomía & histología , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Fenotipo , Polimorfismo de Nucleótido Simple , Desequilibrio de Ligamiento
6.
Exp Parasitol ; 260: 108723, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38432406

RESUMEN

Cystic echinococcosis (CE) is a zoonotic disease, caused by Echinococcus granulosus sensu lato (E. granulosus s. l.), which posed significant public health concern globally. E. granulosus s. l. annexin B18 (EgANXB18) acts as a secretory protein, exerting a crucial influence in mediating host-parasite interactions. Recombinant annexin B18 (rEgANXB18) was expressed by Escherichia coli and the immunoreactivity was assessed by western blotting. The binding affinity between rEgANXB18 and total protein of RAW264.7 cells was assessed by ELISA. The impact of rEgANXB18 on the metabolic activity of RAW264.7 cells was assayed by Cell Counting Kit-8 assay. The mRNA levels of polarization markers (inducible nitrous oxide synthase (iNOS) and arginase 1 (Arg1)) and key cellular factors (IL-1ß,IL-6,IL-10 and TNFα) were evaluated by qRT-PCR. rEgANXB18 was successfully expressed and recognized by E. granulosus s.l. infected canine sera, as well as could bind to the total protein of RAW264.7 cells. Additionally, rEgANXB18 could promote metabolic activity at 5, 10, 20, and 40 µg/mL while no significant impact on metabolic activity was observed at 80 µg/mL. Co-culture RAW264.7 cells with rEgANXB18 resulted in significantly upregulation of the transcript levels of polarization markers iNOS and Arg1. Moreover, rEgANXB18 significantly upregulated the transcript levels of IL-1ß, IL-6, TNFα, and IL-10, while dose-effect relationship was observed in IL-1ß, IL-6, and IL-10. Our results indicated that EgANXB18 showed the potential to regulate immune response of macrophages by shifting the cell polarization and cytokine profile, thereby promoting the parasitism of CE.


Asunto(s)
Anexinas , Arginasa , Equinococosis , Echinococcus granulosus , Macrófagos , Óxido Nítrico Sintasa de Tipo II , Animales , Echinococcus granulosus/genética , Echinococcus granulosus/inmunología , Ratones , Macrófagos/parasitología , Macrófagos/metabolismo , Células RAW 264.7 , Arginasa/metabolismo , Arginasa/genética , Equinococosis/parasitología , Equinococosis/inmunología , Óxido Nítrico Sintasa de Tipo II/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Anexinas/genética , Anexinas/metabolismo , Perros , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Citocinas/metabolismo , Citocinas/genética , ARN Mensajero/metabolismo , Ensayo de Inmunoadsorción Enzimática , Western Blotting , Interacciones Huésped-Parásitos
7.
Genomics ; 115(6): 110728, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37858843

RESUMEN

The anthocyanin is a protective substance in various plants, and plays important roles in resisting to low-temperature. Here, we explored transcriptome analysis of pink flower (as CK) and the natural mutant red flower (as research objects) under low-temperature conditions, and aimed to reveal the potential functions of anthocyanins and anthocyanin-related regulatory factors in resistance to low-temperature. Our results showed that most of the differentially expressed genes (DEGs) encoding key enzymes in the late stage of anthocyanin metabolism in the mutant were significantly up-regulated. Meanwhile, several genes significantly differentially expressed in CK or mutant were obtained by classification and analysis of transcription factors (TFs), phytohormones and osmoregulators. Additionally, WGCNA was carried out to mine hub genes resistanted to low-temperature stress in flavonoid pathway. Finally, one UFGT family gene, three MYB and one bHLH were obtained as the future hub genes of this study. Combined with the above information, we concluded that the ability of the red flower mutant to grow and develop normally at low-temperatures was the result of a combination of flavonoids and cold resistance genes.


Asunto(s)
Antocianinas , Transcriptoma , Antocianinas/genética , Temperatura , Flores/genética , Flores/metabolismo , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pigmentación/genética
8.
BMC Plant Biol ; 23(1): 204, 2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37076827

RESUMEN

BACKGROUND: Uridine disphosphate (UDP) glycosyltransferases (UGTs) act upon a huge variety of highly diverse and complex substrates, such as phytohormones and specialized metabolites, to regulate plant growth, development, disease resistance, and environmental interactions. However, a comprehensive investigation of UGT genes in tobacco has not been conducted. RESULTS: In this study, we carried out a genome-wide analysis of family-1 UDP glycosyltransferases in Nicotiana tabacum. We predicted 276 NtUGT genes, which were classified into 18 major phylogenetic subgroups. The NtUGT genes were invariably distributed among all the 24 chromosomes with structural diversity in exon/intron structure, conserved motifs, and cis-acting elements of promoters. Three groups of proteins which involved in flavonoid biosynthesis, plant growth and development, transportation and modification were identified that interact with NtUGT proteins using the PPI analysis. Expression analysis of NtUGT genes in cold stress, drought stress and different flower color using both online RNA-Seq data and the realtime PCR analysis, suggested the distinct role of NtUGT genes in resistance of cold, drought and in flavonoid biosynthesis. The enzymatic activities of seven NtUGT proteins that potentially involved in flavonoid glycosylation were analyzed, and found that all seven exhibited activity on myricetin; six (NtUGT108, NtUGT123, NtUGT141, NtUGT155, NtUGT179, and NtUGT195) showed activity on cyanidin; and three (NtUGT108, NtUGT195, and NtUGT217) were active on the flavonol aglycones kaempferol and quercetin, which catalyzing the substrates (myricetin, cyanidin or flavonol) to form new products. We further investigated the enzymatic products and enzymatic properties of NtUGT108, NtUGT195, and NtUGT217, suggested their diverse enzymatic activity toward flavonol, and NtUGT217 showed the highest catalyzed efficient toward quercetin. Overexpression of NtUGT217 significantly increase the content levels of the quercetin-3-O-glucoside, quercetin-3-O-rutinoside and kaempferol-3-O-rutinoside in transgenic tobacco leaves. CONCLUSION: We identified 276 UGT genes in Nicotiana tabacum. Our study uncovered valuable information about the phylogenetic structure, distribution, genomic characters, expression patterns and enzymatic activity of NtUGT genes in tobacco. We further identified three NtUGT genes involved in flavonoid biosynthesis, and overexpressed NtUGT217 to validate its function in catalyze quercetin. The results provide key candidate NtUGT genes for future breeding of cold and drought resistance and for potential metabolic engineering of flavonoid compounds.


Asunto(s)
Glicosiltransferasas , Nicotiana , Quercetina , Flavonoides/metabolismo , Flavonoles , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Filogenia , Fitomejoramiento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Quercetina/metabolismo , Estrés Fisiológico/genética , Nicotiana/genética , Nicotiana/metabolismo , Uridina/metabolismo , Uridina Difosfato/metabolismo
9.
Plant Biotechnol J ; 21(1): 63-77, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36121304

RESUMEN

Receptor-like kinases (RLKs) constitute the largest receptor family involved in the regulation of plant immunity and growth, but small-molecule inhibitors that target RLKs to improve agronomic traits remain unexplored. The RLK member FERONIA (FER) negatively regulates plant resistance to certain soil-borne diseases that are difficult to control and cause huge losses in crop yields and economy. Here, we identified 33 highly effective FER kinase inhibitors from 1494 small molecules by monitoring FER autophosphorylation in vitro. Four representative inhibitors (reversine, cenisertib, staurosporine and lavendustin A) inhibited the kinase activity of FER and its homologues in several crops by targeting the conserved ATP pocket in the kinase structure. FER contributes to the physiological impact of representative inhibitors in plants. The treatment of roots with reversine, staurosporine and lavendustin A enhanced innate immunity in plant roots and thus alleviated soil-borne diseases in tobacco, tomato and rice without growth penalties. Consistently, RNA sequencing assays showed that lavendustin A and reversine exert profound impacts on immunity-related gene expression. Our results will set a new milestone in the development of the plant RLK kinase regulation theory and provide a novel strategy for the prevention and control of plant soil-borne diseases without growth penalties.


Asunto(s)
Proteínas de Arabidopsis , Fosfotransferasas , Estaurosporina , Fosfotransferasas/genética , Inmunidad de la Planta/genética , Plantas/metabolismo , Raíces de Plantas , Proteínas de Arabidopsis/genética
10.
Plant Physiol ; 190(3): 1941-1959, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-35736512

RESUMEN

Perception of pathogen-associated molecular patterns (PAMPs) triggers mitogen-activated protein (MAP) kinase 4 (MPK4)-mediated phosphorylation and induces downstream transcriptional reprogramming, but the mechanisms of the MPK4 defense pathway are poorly understood. Here, we showed that phosphorylation-mediated inactivation of the CCCH protein C3H14 by MPK4 positively regulates the immune response in Arabidopsis (Arabidopsis thaliana). Compared with wild-type plants, loss-of-function mutations in C3H14 and its paralog C3H15 resulted in enhanced defense against Pst DC3000 in infected leaves and the development of systemic acquired resistance (SAR), whereas C3H14 or C3H15 overexpression enhanced susceptibility to this pathogen and failed to induce SAR. The functions of C3H14 in PAMP-triggered immunity (PTI) and SAR were dependent on MPK4-mediated phosphorylation. Challenge with Pst DC3000 or the flagellin peptide flg22 enhanced the phosphorylation of C3H14 by MPK4 in the cytoplasm, relieving C3H14-inhibited expression of PTI-related genes and attenuating C3H14-activated expression of its targets NIM1-INTERACTING1 (NIMIN1) and NIMIN2, two negative regulators of SAR. Salicylic acid (SA) affected the MPK4-C3H14-NIMIN1/2 cascades in immunity, but SA signaling mediated by the C3H14-NIMIN1/2 cascades was independent of MPK4 phosphorylation. Our study suggests that C3H14 might be a negative component of the MPK4 defense signaling pathway.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Moléculas de Patrón Molecular Asociado a Patógenos/metabolismo , Fosforilación , Inmunidad de la Planta/genética , Pseudomonas syringae/metabolismo , Proteínas de Unión al ARN/metabolismo , Ácido Salicílico/metabolismo
11.
J Exp Bot ; 73(12): 3913-3928, 2022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35262703

RESUMEN

Glandular trichomes of tobacco (Nicotiana tabacum) produce blends of acylsucroses that contribute to defence against pathogens and herbivorous insects, but the mechanism of assembly of these acylsugars has not yet been determined. In this study, we isolated and characterized two trichome-specific acylsugar acyltransferases that are localized in the endoplasmic reticulum, NtASAT1 and NtASAT2. They sequentially catalyse two additive steps of acyl donors to sucrose to produce di-acylsucrose. Knocking out of NtASAT1 or NtASAT2 resulted in deficiency of acylsucrose; however, there was no effect on acylsugar accumulation in plants overexpressing NtASAT1 or NtASAT2. Genomic analysis and profiling revealed that NtASATs originated from the T subgenome, which is derived from the acylsugar-producing diploid ancestor N. tomentosiformis. Our identification of NtASAT1 and NtASAT2 as enzymes involved in acylsugar assembly in tobacco potentially provides a new approach and target genes for improving crop resistance against pathogens and insects.


Asunto(s)
Nicotiana , Tricomas , Aciltransferasas/genética , Proteínas de Plantas/genética , Sacarosa , Nicotiana/genética , Tricomas/genética
12.
Genet Sel Evol ; 54(1): 75, 2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36401180

RESUMEN

BACKGROUND: Rabbit wool traits are important in fiber production and for model organism research on hair growth, but their genetic architecture remains obscure. In this study, we focused on wool characteristics in Angora rabbits, a breed well-known for the quality of its wool. Considering the cost to generate population-scale sequence data and the biased detection of variants using chip data, developing an effective genotyping strategy using low-coverage whole-genome sequencing (LCS) data is necessary to conduct genetic analyses. RESULTS: Different genotype imputation strategies (BaseVar + STITCH, Bcftools + Beagle4, and GATK + Beagle5), sequencing coverages (0.1X, 0.5X, 1.0X, 1.5X, and 2.0X), and sample sizes (100, 200, 300, 400, 500, and 600) were compared. Our results showed that using BaseVar + STITCH at a sequencing depth of 1.0X with a sample size larger than 300 resulted in the highest genotyping accuracy, with a genotype concordance higher than 98.8% and genotype accuracy higher than 0.97. We performed multivariate genome-wide association studies (GWAS), followed by conditional GWAS and estimation of the confidence intervals of quantitative trait loci (QTL) to investigate the genetic architecture of wool traits. Six QTL were detected, which explained 0.4 to 7.5% of the phenotypic variation. Gene-level mapping identified the fibroblast growth factor 10 (FGF10) gene as associated with fiber growth and diameter, which agrees with previous results from functional data analyses on the FGF gene family in other species, and is relevant for wool rabbit breeding. CONCLUSIONS: We suggest that LCS followed by imputation can be a cost-effective alternative to array and high-depth sequencing for assessing common variants. GWAS combined with LCS can identify new QTL and candidate genes that are associated with quantitative traits. This study provides a cost-effective and powerful method for investigating the genetic architecture of complex traits, which will be useful for genomic breeding applications.


Asunto(s)
Pelaje de Animal , Herencia Multifactorial , Conejos , Lana , Animales , Conejos/genética , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo
13.
Genomics ; 113(6): 3582-3598, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34425225

RESUMEN

Studies on cell atlas in marine invertebrates provide a better understanding of cell types, stem cell maintenance, and lineages of cell differentiation. To investigate the molecular features of various cell types in molluscan muscles, we performed single-cell RNA sequencing (scRNA-seq) to map cell types in scallop adductor muscles. We uncovered the cell type-specific features of 20 cell clusters defined by the expression of multiple specific molecular markers. These cell clusters are mainly classified into four broad classes, including mesenchymal stem cells, muscle cells, neurons, and haemolymph cells. In particular, we identified a diverse repertoire of neurons in the striated adductor muscle, but not in the smooth muscle. We further reconstructed the cell differentiation events using all the cell clusters by single-cell pseudotemporal trajectories. By integrating dual BrdU-PCNA immunodetection, neuron-specific staining and electron microscopy observation, we showed the spatial distribution of mesenchymal stem cells and neurons in striated adductor muscle of scallops. The present findings will not only be useful to address the cell type-specific gene expression profiles in scallop muscles, but also provide valuable resources for cross-species comparison of marine organisms.


Asunto(s)
Pectinidae , Animales , Músculo Esquelético , Músculo Liso/química , Pectinidae/genética , Pectinidae/metabolismo , RNA-Seq , Alimentos Marinos
14.
Planta ; 252(1): 13, 2020 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-32621079

RESUMEN

MAIN CONCLUSION: NtALS1 is specifically expressed in glandular trichomes, and can improve the content of acylsugars in tobacco. ABTRACT: The glandular trichomes of many species in the Solanaceae family play an important role in plant defense. These epidermal outgrowths exhibit specialized secondary metabolism, including the production of structurally diverse acylsugars that function in defense against insects and have substantial developmental potential for commercial uses. However, our current understanding of genes involved in acyl chain biosynthesis of acylsugars remains poor in tobacco. In this study, we identified three acetolactate synthase (ALS) genes in tobacco through homology-based gene prediction using Arabidopsis ALS. Quantitative real-time PCR (qRT-PCR) and tissue distribution analyses suggested that NtALS1 was highly expressed in the tips of glandular trichomes. Subcellular localization analysis showed that the NtALS1 localized to the chloroplast. Moreover, in the wild-type K326 variety background, we generated two ntals1 loss-of-function mutants using the CRISPR-Cas9 system. Acylsugars contents in the two ntals1 mutants were significantly lower than those in the wild type. Through phylogenetic tree analysis, we also identified NtALS1 orthologs that may be involved in acylsugar biosynthesis in other Solanaceae species. Taken together, these findings indicate a functional role for NtALS1 in acylsugar biosynthesis in tobacco.


Asunto(s)
Acetolactato Sintasa/genética , Nicotiana/metabolismo , Azúcares/metabolismo , Tricomas/enzimología , Acetolactato Sintasa/metabolismo , Proteínas de Arabidopsis/genética , Sistemas CRISPR-Cas , Cloroplastos/enzimología , Diploidia , Regulación de la Expresión Génica de las Plantas , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Nicotiana/genética , Tricomas/genética
15.
BMC Vet Res ; 16(1): 235, 2020 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-32646425

RESUMEN

BACKGROUND: Bartonella bacteria have been associated with an increasingly wide range of human and animal diseases. These emerging pathogens have been identified as being globally dispersed. Ticks and small rodents are known hosts of Bartonella and play a significant role in the preservation and circulation of Bartonella in nature. This study investigated the occurrence of hoist spp. in ticks (Acari: Ixodidae) and plateau pikas (Ochotona curzoniae) in Shiqu County, which is located on the eastern Qinghai-Tibetan Plateau in China. Shiqu County is spread over approximately 26,000 km2, with an average altitude of above 4200 m and a vast area of pastureland. RESULTS: A total of 818 ticks (Dermacentor everestianus, 79.0%, 646/818; Haemaphysalis qinghaiensis, 21.0%, 172/818) were collected from yaks in 4 villages of Shiqu County. Only Bartonella melophagi was detected in tick samples, with a total prevalence of 30.1% (246/818). The infection rates of B. melophagi in ticks from Arizha, Maga, Derongma, and Changxgma were 4.8, 76.8, 12.5, and 18.0%, respectively. The infection rate of B. melophagi in Maga was higher (p < 0.01) than those in other villages. Regarding plateau pikas, the total infection rate of Bartonella spp. was 21.7% (62/286), with 16.7% (12/72), 30.9% (25/81), 13.8% (9/65), and 23.5% (16/68) in Arizha, Maga, Derongma, and Changxgma, respectively. Finally, B. queenslandensis and B. grahamii were detected in plateau pika. No significant difference was observed (p > 0.05) in the infection rates between these study sites. CONCLUSION: To date, only D. everestianus and H. qinghaiensis were found in Shiqu County with high infection of Bartonella spp. in the ticks and plateau pika. The threats of Bartonella species to public health should be closely monitored.


Asunto(s)
Bartonella/genética , Bovinos/microbiología , Bovinos/parasitología , Ixodidae/microbiología , Lagomorpha/microbiología , Lagomorpha/parasitología , Animales , Bartonella/aislamiento & purificación , China , ADN Bacteriano/genética
16.
Parasitol Res ; 119(8): 2641-2648, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32556503

RESUMEN

Theileria species, with a broad geographic distribution, infect a wide range of both domestic and wild animals and are transmitted by ixodid ticks. Currently, there is no comprehensive report regarding the distribution of Theileria spp. in the eastern Tibetan Plateau, especially in Ganze Tibetan autonomous prefecture (153,700 km2) and Ngawa Tibetan and Qiang autonomous prefecture (84,242 km2) of Sichuan province, China. In this study, we collected blood samples from yaks (n = 144) (Bos grunniens), Tibetan sheep (n = 92), and Tibet horses (n = 142) in Ganze and Ngawa.Theileria sinensis, T. luwenshuni, and T. equi were the dominant Theileria species detected in yaks, Tibetan sheep, and horses with the total infection rates of 25.7% (37/144), 75.0% (69/92), and 51.4% (73/142), respectively. For ectoparasites, T. luwenshuni was the only Theileria species detected in sheep keds (Melophagus ovinus) with an infection rate of 30.8% (8/26). The total infection rates of T. sinensis in Haemaphysalis qinghaiensis, Dermacentor everestianus, and Rhipicephalus microplus were 34.6% (36/104), 34.0% (17/50), and 51.3% (58/113), respectively. Theileria spp., belonging to T. sergenti/buffeli/orientalis group, were only detected in R. microplus collected in Danba county of Ganze with a total infection rate of 39.9% (19/48). Our results provide important data of the epidemiology of Theileria spp. in livestock and ectoparasites and will assist with the implementation of measures to control theileriosis transmission in eastern Tibetan Plateau, China.


Asunto(s)
Vectores Arácnidos/parasitología , Ganado/parasitología , Theileria/aislamiento & purificación , Theileriosis/epidemiología , Garrapatas/parasitología , Animales , Vectores Arácnidos/clasificación , Bovinos , Caballos , Ovinos , Theileria/clasificación , Theileriosis/parasitología , Theileriosis/transmisión , Tibet/epidemiología , Garrapatas/clasificación
17.
Int J Mol Sci ; 21(7)2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32244798

RESUMEN

sua-CMS (cytoplasmic male sterility) is the only male sterile system in tobacco breeding, but the mechanism of abortion is unclear. Cytological characteristics show that abortion in the sua-CMS line msZY occurs before the differentiation of sporogenous cells. In this study, a comparative transcriptomic analysis was conducted on flower buds at the abortion stage of msZY and its male fertile control ZY. A total of 462 differentially expressed genes were identified in msZY and ZY, which were enriched via protein processing in the endoplasmic reticulum (ER), oxidative phosphorylation, photosynthesis, and circadian rhythm-plant by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. Most genes were downregulated in the ER stress pathway, heat-shock protein family, F1F0-ATPase encoding by the mitochondrial genome, and differentiation of stamens. Genes in the programmed cell death (PCD) pathway were upregulated in msZY. The transcriptome results were consistent with those of qRT-PCR. Ultrastructural and physiological analyses indicted active vacuole PCD and low ATP content in msZY young flower buds. We speculated that PCD and a deficiency in ATP synthesis are essential for the abortion of sua-CMS. This study reveals the potential mechanism of abortion of tobacco sua-CMS.


Asunto(s)
Citoplasma/genética , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas/genética , Nicotiana/genética , Infertilidad Vegetal/genética , Apoptosis/genética , Estrés del Retículo Endoplásmico/genética , Metabolismo Energético/genética , Flores/genética , Flores/metabolismo , Flores/ultraestructura , Ontología de Genes , Genoma Mitocondrial/genética , Microscopía Electrónica de Transmisión , Polen/genética , Polen/metabolismo , Polen/ultraestructura , Transducción de Señal/genética , Nicotiana/metabolismo
18.
BMC Genomics ; 20(1): 671, 2019 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-31443640

RESUMEN

BACKGROUND: The Yesso scallop, Patinopecten (Mizuhopecten) yessoensis, is a commercially important bivalve in the coastal countries of Northeast Asia. It has complex modes of sex differentiation, but knowledge of the mechanisms underlying this sex determination and differentiation is limited. RESULTS: In this study, the gonad tissues from females and males at three developmental stages were used to investigate candidate genes and networks for sex differentiation via RNA-Req. A total of 901,980,606 high quality clean reads were obtained from 18 libraries, of which 417 expressed male-specific genes and 754 expressed female-specific genes. Totally, 10,074 genes differentially expressed in females and males were identified. Weighted gene co-expression network analysis (WGCNA) revealed that turquoise and green gene modules were significantly positively correlated with male gonads, while coral1 and black modules were significantly associated with female gonads. The most important gene for sex determination and differentiation was Pydmrt 1, which was the only gene discovered that determined the male sex phenotype during early gonadal differentiation. Enrichment analyses of GO terms and KEGG pathways revealed that genes involved in metabolism, genetic and environmental information processes or pathways are sex-biased. Forty-nine genes in the five modules involved in sex differentiation or determination were identified and selected to construct a gene co-expression network and a hypothesized sex differentiation pathway. CONCLUSIONS: The current study focused on screening genes of sex differentiation in Yesso scallop, highlighting the potential regulatory mechanisms of gonadal development in P. yessoensis. Our data suggested that WCGNA can facilitate identification of key genes for sex differentiation and determination. Using this method, a hypothesized P. yessoensis sex determination and differentiation pathway was constructed. In this pathway, Pydmrt 1 may have a leading function.


Asunto(s)
Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Pectinidae/genética , Pectinidae/fisiología , Diferenciación Sexual/genética , Animales , Análisis de Secuencia
19.
Planta ; 249(2): 543-561, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30293202

RESUMEN

MAIN CONCLUSION: This study illustrates the differences in the gene structure of 2-oxoglutarate-dependent oxygenase involved in flavonoid biosynthesis (2ODD-IFB), and their potential roles in regulating tobacco flavonoid biosynthesis and plant growth. Flavonol synthase (FLS), anthocyanidin synthase (ANS), and flavanone 3ß-hydroxylase belong to the 2-oxoglutarate-dependent (2ODD) oxygenase family, and each performs crucial functions in the biosynthesis of flavonoids. We identified two NtFLS genes, two NtANS genes, and four NtF3H genes from Nicotiana tabacum genome, as well as their homologous genes in the N. sylvestris and N. tomentosiformis genomes. Our phylogenetic analysis indicated that these three types of genes split from each other before the divergence of gymnosperms and angiosperms. FLS evolved faster in the eudicot plants, whereas ANS evolved faster in the monocot plants. Gene structure analysis revealed two fragment insertions occurred at different times in the intron one position of tobacco FLS genes. Homologous protein modeling revealed distinct structures in the N terminus of the tobacco 2ODD oxygenases. We found that the expression patterns of genes encoding tobacco 2ODD oxygenases in flavonoids biosynthesis (2ODD-IFB) did not determine the accumulation patterns of flavonoids among various tobacco tissues, but strongly affected the concentration of flavonoids in the tissues, where they were biosynthesized. More carbon resource flowed to the flavonol biosynthesis when NtANS gene was silenced, otherwise more anthocyanidin accumulated when NtFLS gene was repressed. This study illustrates the 2ODD-IFB gene structure evolution, differences among their protein structures, and provides a foundation for regulating plant development and altering flavonoid content and/or composition through the manipulation of plant 2ODD-IFB genes.


Asunto(s)
Flavonoides/biosíntesis , Genes de Plantas/genética , Oxigenasas de Función Mixta/genética , Nicotiana/genética , Transducción de Señal/genética , Secuencia Conservada/genética , Exones/genética , Intrones/genética , Oxigenasas de Función Mixta/metabolismo , Filogenia , Alineación de Secuencia , Análisis de Secuencia de ADN , Nicotiana/enzimología , Nicotiana/metabolismo
20.
Fish Shellfish Immunol ; 84: 304-311, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30219385

RESUMEN

Scapharca broughtonii is one of the most important Arcidae aquaculture species in the Asia-Pacific region. We aimed to investigate the immune responses of hemocytes from ark shell S. broughtonii hemolymph against pathogens. Hemocyte ultrastructure and immunological activity in response to Vibrio anguillarum challenge were observed by scanning and transmission electron microscopy. Before ultrastructure observation, we used the API ZYM semi-quantitative kit to evaluate the levels of hydrolytic enzymes in the plasma and hemocytes following V. anguillarum infection. An enzyme-linked immunosorbent assay kit was used to investigate the variation in the lysozyme activity and hemocytes following bacterial infection. The results showed that hemocytes were the main defense cells against bacterial infection, whereas plasma played a role in the transport and support of hemocytes. It was presumed that an important function of lysozymes and hydrolytic enzymes in lysosomes was for bacterial digestion. Three major types of hemocytes were observed, namely, red blood cells (RBCs), white blood cells (WBCs), and thrombocytes (TCs). Scanning electron microscopy showed that the normal RBCs appeared pie-shaped with 10 µm diameter and 4 µm central thickness, whereas WBCs were spherical in shape with varying sizes, 4-8 µm diameter, and included small lymphocytes. TCs were long, spindle-shaped, and 12-20 µm in length. The cell membrane surface was smooth and even for all cells before pathogen challenge. Under transmission electron microscopy, RBCs displayed a limited ability to devour and digest bacteria adherent to the cell surface following infection. Many hemoglobin particles were observed in the RBC cytoplasm. WBCs were very active against bacterial invasion and showed a strong ability to digest and decompose infected and wrapped V. anguillarum through phagocytosis and lysosome fusion. Digestive vacuoles rapidly became transparent and were thought to contain increasing quantities of pathogen-induced lysozymes. WBCs that devoured pathogenic bacteria were prone to deformation as well as adhesion to each other. TCs were rich in endoplasmic reticulum (ER) content in their cytoplasm and were widely connected in a net-shaped structure. Mitochondria in TCs formed clusters upon invasion of V. anguillarum in the hemolymph. TCs disintegrated to release the ER into the plasma to form a mesh that facilitated clotting. The ability of circulating hemocytes to quickly modify their morphologies and stainability suggests that S. broughtonii is endowed with highly dynamic hemocyte populations capable of coping with environmental changes and rapidly growing pathogens.


Asunto(s)
Hemocitos/inmunología , Inmunidad Celular , Inmunidad Innata , Scapharca/inmunología , Vibrio/fisiología , Animales , Hemocitos/microbiología , Hemolinfa/inmunología , Scapharca/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA