Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Small ; 20(31): e2310398, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38461535

RESUMEN

Flexible magnesium (Mg)-air batteries provide an ideal platform for developing efficient energy-storage devices toward wearable electronics and bio-integrated power sources. However, high-capacity bio-adaptable Mg-air batteries still face the challenges in low discharge potential and inefficient oxygen electrodes, with poor kinetics property toward oxygen reduction reaction (ORR). Herein, spinel nickel cobalt oxides (NiCo2O4) nanowires immobilized on nitrogen-doped Ti3C2Tx (NiCo2O4/N-Ti3C2Tx) are reported via surface chemical-bonded effect as oxygen electrodes, wherein surface-doped pyridinic-N-C and Co-pyridinic-N moieties accounted for efficient ORR owing to increased interlayer spacing and changed surrounding environment around Co metals in NiCo2O4. Importantly, in polyethylene glycol (PVA)-NaCl neutral gel electrolytes, the NiCo2O4/N-Ti3C2Tx-assembled quasi-solid wearable Mg-air batteries delivered high open-circuit potential of 1.5 V, good flexibility under various bent angles, high power density of 9.8 mW cm-2, and stable discharge duration to 12 h without obvious voltage drop at 5 mA cm-2, which can power a blue flexible light-emitting diode (LED) array and red smart rollable wearable device. The present study stimulates studies to investigate Mg-air batteries involving human-body adaptable neutral electrolytes, which will facilitate the application of Mg-air batteries in portable, flexible, and wearable power sources for electronic devices.

2.
Acta Pharmacol Sin ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38914676

RESUMEN

Methamphetamine (METH), an abused psychostimulant, impairs cognition through prolonged or even single-dose exposure, but animal experiments have shown contradictory effects on memory deficits. In this study we investigated the effects and underlying mechanisms of single-dose METH administration on the retrieval of object recognition memory (ORM) in mice. We showed that single-dose METH administration (2 mg/kg, i.p.) significantly impaired ORM retrieval in mice. Fiber photometry recording in METH-treated mice revealed that the activity of prelimbic cortex glutamatergic neurons (PrLGlu) was significantly reduced during ORM retrieval. Chemogenetic activation of PrLGlu or glutamatergic projections from ventral CA1 to PrL (vCA1Glu-PrL) rescued ORM retrieval impairment. Fiber photometry recording revealed that dopamine (DA) levels in PrL of METH-treated mice were significantly increased, and micro-infusion of the D2 receptor (D2R) antagonist sulpiride (0.25 µg/side) into PrL rescued ORM retrieval impairment. Whole-cell recordings in brain slices containing the PrL revealed that PrLGlu intrinsic excitability and basal glutamatergic synaptic transmission were significantly reduced in METH-treated mice, and the decrease in intrinsic excitability was reversed by micro-infusion of Sulpiride into PrL in METH-treated mice. Thus, the impaired ORM retrieval caused by single-dose METH administration may be attributed to reduced PrLGlu activity, possibly due to excessive DA activity on D2R. Selective activation of PrLGlu or vCA1Glu-PrL may serve as a potential therapeutic strategy for METH-induced cognitive dysfunction.

3.
Prep Biochem Biotechnol ; 54(1): 103-114, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37184437

RESUMEN

Gamma-aminobutyric acid (GABA) is an vital neurotransmitter, and the reaction to obtain GABA through biocatalysis requires coenzymes, which are therefore limited in the production of GABA. In this study, polyacrylamide hydrogels doped with chitosan and waste toner were synthesized for glutamate decarboxylase (GAD) and coenzyme co-immobilization to realize the production of GABA and the recovery of coenzymes. Enzymatic properties of immobilized GAD were discussed. The immobilized enzymes have significantly improved pH and temperature tolerance compared to free enzymes. In terms of reusability, after 10 repeated reuses of the immobilized GAD, the residual enzyme activity of immobilized GAD still retains 100% of the initial enzyme activity, and the immobilized coenzyme can also be kept at about 32%, with better stability and reusability. And under the control of no exogenous pH, immobilized GAD showed good performance in producing GABA. Therefore, in many ways, the new composite hydrogel provides another way for the utilization of waste toner and promises the possibility of industrial production of GABA.


Asunto(s)
Quitosano , Glutamato Descarboxilasa/química , Ácido gamma-Aminobutírico , Coenzimas , Fenómenos Magnéticos
4.
J Org Chem ; 88(18): 13272-13278, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37656971

RESUMEN

A simple and efficient method for the synthesis of unsymmetrical disulfides is reported. Using sodium sulfites and 2-mercaptobenzo heterocyclic compounds as starting materials, the unsymmetrical sulfur-sulfur bonds could be quickly constructed in the PPh3/I2 reaction system under transition-metal-free conditions. This protocol has the advantages of mild reaction conditions, easily available starting materials, and wide substrate scope, showing potential synthetic value for the synthesis of a diversity of biologically or pharmaceutically active compounds.

5.
J Org Chem ; 87(17): 11656-11668, 2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-35959946

RESUMEN

Using phenyliodine diacetate as an oxidant and nickel acetate as a promoter, a wide range of unsymmetric thiosulfonates could be furnished easily in moderate to excellent yields starting from N-substituted O-thiocarbamates and sodium sulfinates. This protocol features mild conditions, short reaction times, and high atomic utilization, which can provide an alternative method for the synthesis of unsymmetric thiosulfonates. In addition, the reaction could be scaled up on a gram scale, showing potential application value in industry.

6.
Biomed Chromatogr ; 36(6): e5356, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35178731

RESUMEN

Untreated invasive fungal infection is one of the important risk factors affecting the prognosis of pediatric patients with hematologic tumors. Voriconazole (VOR) is the first-line antifungal drug for the treatment of Aspergillus infections. In order to reduce the risk of adverse drug reactions while producing an ideal antifungal effect, therapeutic drug monitoring was performed to maintain the VOR plasma concentration in a range of 1,000-5,500 ng/ml. In the present study, a reliable, accurate, sensitive and quick ultra-high performance liquid chromatograph-tandem mass spectrometry (UPLC-MS/MS) method was developed for the determination of the VOR level. Protein precipitation was performed using acetonitrile, and then the chromatographic separation was carried out by UPLC using a C18 column with the gradient mobile phases comprising 0.1% methanoic acid in acetonitrile (A) and 0.1% methanoic acid in water (B). In the selective reaction monitor mode, the mass spectrometric detection was carried out using an TSQ Endura triple quadruple mass spectrometer. The performance of this UPLC-MS/MS method was validated as per the National Medical Products Administration for Bioanalytical Method Validation. Additionally, the plasma concentrations of VOR in pediatric patients with hematologic tumors were detected using this method, and the analyzed results were used for personalized therapy.


Asunto(s)
Neoplasias Hematológicas , Espectrometría de Masas en Tándem , Acetonitrilos , Antifúngicos/uso terapéutico , Niño , Cromatografía Líquida de Alta Presión/métodos , Cromatografía Liquida/métodos , Neoplasias Hematológicas/tratamiento farmacológico , Humanos , Reproducibilidad de los Resultados , Espectrometría de Masas en Tándem/métodos , Voriconazol/uso terapéutico
7.
Prep Biochem Biotechnol ; 52(9): 1035-1043, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35015605

RESUMEN

Enzyme immobilization provides ideal operating conditions for enzymes stabilization and sustainable recycling. In this work, as a kind of clay material, montmorillonite (MTL) was chosen for immobilizing the ß-glucosidase extracted from Agrocybe aegirit. The immobilized ß-glucosidase via partly cross-linking enzyme aggregates (pCLEAs) formed by self-catalysis provided biocatalysts with satisfactory thermal and pH stability. Compared to the glutaraldehyde cross-linked, the immobilized ß-glucosidase (ß-G-pCLEAs@MTL) exhibited significantly higher immobilization efficiency (IE) and immobilization yield (IY), which were 80.6% and 76.9%, respectively. The ß-G-pCLEAs@MTL also showed better stability and preferable reusability. And the activity of the ß-G-pCLEAs@MTL remained 85.0% after 5 cycles and 74.7% after 10 cycles. Therefore, the method based on the pre- crosslinking to form pCLEAs and after-immobilization can effectively improve IY and IE. In addition, MTL seems to be a good alternative carrier to immobilize other enzymes for industrial application.


Asunto(s)
Bentonita , Enzimas Inmovilizadas , Arcilla , Estabilidad de Enzimas , Enzimas Inmovilizadas/metabolismo , Glutaral , Concentración de Iones de Hidrógeno , Temperatura , beta-Glucosidasa/metabolismo
8.
Bioorg Chem ; 85: 445-454, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30776555

RESUMEN

In this study, three hybrids of podophyllotoxin and formononetin were synthesized and evaluated for anticancer efficacy. Some of the derivatives exhibited potent cytotoxicity against a panel of human and mouse cancer cell lines, with IC50 values in the low micromolar to submicromolar range. Evaluation against A549 lung tumor cell line identified that the IC50 value of compound 10a was 0.753 µM, indicating that 10a was 2.568-fold more efficacious than parent podophyllotoxin. Mechanistic studies revealed that 10a induced A549 cell apoptosis mainly via caspase pathway, as well as disrupted the microtubule organization by occupying the colchicine binding site of the tubulin. Moreover, wound healing assay and transwell invasion assay indicated that 10a displayed potent inhibitory effects on invasion and migration in A549 cancer cells. In additiona, a decrease in vimentin immunostaining was also observed in A549 cells after treatment with 10a. Overall, hybrid 10a might be a promising candidate for the potential treatment of human lung carcinoma.


Asunto(s)
Antineoplásicos/farmacología , Movimiento Celular/efectos de los fármacos , Isoflavonas/farmacología , Podofilotoxina/análogos & derivados , Podofilotoxina/farmacología , Animales , Antineoplásicos/síntesis química , Apoptosis/efectos de los fármacos , Caspasa 8/metabolismo , Bovinos , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Isoflavonas/síntesis química , Neoplasias Pulmonares/tratamiento farmacológico , Ratones , Simulación del Acoplamiento Molecular , Podofilotoxina/síntesis química , Ratas , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/síntesis química , Moduladores de Tubulina/farmacología , Vimentina/metabolismo
9.
J Org Chem ; 81(13): 5270-7, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27258967

RESUMEN

A highly efficient asymmetric Mannich reaction of 3-monosubstituted 3-aminooxindoles/3-hydroxyoxindoles with in situ generated N-Boc-protected aldimines catalyzed by the chiral bifunctional thiourea-tertiary amine catalyst has been developed. Under mild reaction conditions, a series of structurally diverse vicinal oxindole-diamines/amino alcohols were smoothly obtained in moderate to high yields (up to 99%) with good to excellent diastereoselectivities and enantioselectivities (up to 95:5 dr and 96% ee). The synthetic application of this protocol was also demonstrated by the versatile transformation of chiral vicinal oxindole-diamine/amino alcohol into spirocyclic oxindoles.

10.
Biotechnol Lett ; 38(8): 1315-20, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27146212

RESUMEN

OBJECTIVES: To find an efficient and cheap system for NAD(+) regeneration RESULTS: A NADH-ferricyanide dehydrogenase was obtained from an isolate of Escherichia coli. Optimal activity of the NADH dehydrogenase was at 45 °C and pH 7.5, with a K m value for NADH of 10 µM. By combining the NADH dehydrogenase, potassium ferricyanide and laccase, a bi-enzyme system for NAD(+) regeneration was established. The system is attractive in that the O2 consumed by laccase is from air and the sole byproduct of the reaction is water. During the reaction process, 10 mM NAD(+) was transformed from NADH in less than 2 h under the condition of 0.5 U NADH dehydrogenase, 0.5 U laccase, 0.1 mM potassium ferricyanide at pH 5.6, 30 °C CONCLUSION: The bi-enzyme system employed the NADH-ferricyanide dehydrogenase and laccase as catalysts, and potassium ferricyanide as redox mediator, is a promising alternative for NAD(+) regeneration.


Asunto(s)
Lacasa/metabolismo , NAD/metabolismo , Catálisis , Escherichia coli/enzimología , Ferricianuros/metabolismo , Cinética , NADH NADPH Oxidorreductasas/metabolismo
11.
Mol Pharm ; 12(6): 2167-79, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-25955154

RESUMEN

Chloroquine diphosphate (CQ) was ingeniously used to take place of phosphate salt in traditional calcium phosphate coprecipitation method for pDNA transfection. With multiple roles of CQ in the novel Ca-CQ-pDNA complex including pDNA compaction and assistance in lysosome escape, the transfection efficiency of the pDNA was significantly increased relative to the traditional method. CQ did not intercalate into the DNA double helix as free CQ did, which was probably ascribed to the prior mixing of the pDNA with high concentration of calcium chloride. In order to construct efficacious vector for in vivo gene delivery, Ca-CQ-pDNA-PLGA-NPs was designed and prepared. With entrapment efficiency, particle size and pDNA integrity as screening conditions, the optimal prescription was obtained and CaPi-pDNA-PLGA-NPs made with classic calcium phosphate coprecipitation method after optimization was also prepared as control to systematically study the role of CQ in the novel vector. Physical characters of the vectors were comprehensively studied using TEM, DSC, and XRD. The safety of the vector both in vitro and in vivo was evaluated using MTT, hemolysis test, and histological sections. The Ca-CQ-pDNA-PLGA-NPs dramatically enhanced the gene tranfection efficiency in Human Embryonic kidney HEK293 cells compared with the CaPi-pDNA-PLGA-NPs and presented an increasing gene transfection for up 144 h. The relative fast release of the CQ compared with pDNA from the nanoparticles was responsive for the increased transfection. The Did-labeled-Ca-CQ-pDNA-PLGA-NPs exhibited excellent tumor targeting efficiency and sustained circulation time in CT26 mouse model. The Ca-CQ-pDNA-PLGA-NP loaded with the plasmid pVITRO2 expressing mSurvivin-T34A protein gave 70% tumor inhibition rate, which was partially ascribed to CQ. The Ca-CQ-pDNA-PLGA-NPs showed high targeting efficiency in C57 acute pancreatitis model. In all, the Ca-CQ-pDNA-PLGA-NP was a promising candidate for targeted gene delivery to both tumor and pancreatitis.


Asunto(s)
Cloroquina/química , Ácido Láctico/química , Pancreatitis/terapia , Plásmidos/administración & dosificación , Ácido Poliglicólico/química , Animales , Rastreo Diferencial de Calorimetría , Células HEK293 , Humanos , Masculino , Ratones , Microscopía Electrónica de Transmisión , Copolímero de Ácido Poliláctico-Ácido Poliglicólico
12.
J Mater Chem B ; 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39082127

RESUMEN

The ion-sensitive field effect transistor (ISFET) has emerged as a crucial sensor device, owing to its numerous benefits such as label-free operation, miniaturization, high sensitivity, and rapid response time. Currently, ISFET technology excels in detecting ions, nucleic acids, proteins, and cellular components, with widespread applications in early disease screening, condition monitoring, and drug analysis. Recent advancements in sensing techniques, coupled with breakthroughs in nanomaterials and microelectronics, have significantly improved sensor performance. These developments are steering ISFETs toward a promising future characterized by enhanced sensitivity, seamless integration, and multifaceted detection capabilities. This review explores the structure and operational principles of ISFETs, highlighting recent research in ISFET biosensors for biomarker detection. It also examines the limitations of these sensors, proposes potential solutions, and anticipates their future trajectory. This review aims to provide a valuable reference for advancing ISFETs in the field of biomarker measurement.

13.
Biosci Biotechnol Biochem ; 77(6): 1236-9, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23748763

RESUMEN

Benzoylformate is used widely as an organic synthetic intermediate. Mandelate racemase and mandelate dehydrogenase are two enzymes used in producing benzoylformate from racemic mandelate in microbial metabolism. In the present work, the genes encoding mandelate racemase and mandelate dehydrogenase from Pseudomonas aeruginosa strain NUST were cloned and expressed in Escherichia coli to convert racemic mandelate to benzoylformate. The use of whole resting cells of recombinant E. coli allowed the conversion of 65.7 mM solution of racemic mandelate to benzoylformate at a yield of 98.9% in 45 h. The process is a promising alternative for the production of benzoylformate.


Asunto(s)
Glioxilatos/metabolismo , Ácidos Mandélicos/metabolismo , Oxidorreductasas/metabolismo , Racemasas y Epimerasas/metabolismo , Proteínas Recombinantes/metabolismo , Secuencia de Aminoácidos , Escherichia coli/genética , Escherichia coli/metabolismo , Fermentación , Glioxilatos/química , Ácidos Mandélicos/química , Oxidorreductasas/genética , Fenilacetatos/metabolismo , Pseudomonas aeruginosa/enzimología , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Racemasas y Epimerasas/genética
14.
Yao Xue Xue Bao ; 48(2): 298-304, 2013 Feb.
Artículo en Zh | MEDLINE | ID: mdl-23672030

RESUMEN

To develop a core-shell structure pDNA-CaPi-PLGA nanoparticles (CS-pDNA-CaPi-PLGA-NPs), calcium phosphate-pDNA nano complexes (CaPi-pDNA) were encapsulated inside of PLGA shells. The characteristics of the nanoparticles, including morphology, average particle size, zeta potential, entrapment efficiency, loading efficiency, stability in medium, pDNA protection ability from nuclease degradation, in vitro release, cytotoxicity and cell transfection were investigated and compared with the embedded structured CaPi modified PLGA nanoparticles (embedded-pDNA-CaPi-PLGA-NPs). The results showed that the obtained CS-pDNA-CaPi-PLGA-NPs were spherical in shape with an average particle size of (155 +/- 4.5) nm, zeta potentials of (-0.38 +/- 0.1) mV, entrapment efficiency of (80.56 +/- 2.5)% and loading efficiency of (1.16 +/- 0.04)%. The CS-pDNA-CaPi-PLGA-NPs were stable in the release media and could protect pDNA against nuclease degradation. And they also exhibited sustained release of pDNA in vitro. The highest gene transfection efficiency of the CS-pDNA-CaPi-PLGA-NPs in vitro reached (24.66 +/- 0.46)% (after 72 h transfection), which was significantly higher than that of free pDNA [(0.33 +/- 0.04)%, P < 0.01] and the pDNA-PLGA-NPs [(1.5 +/- 0.07)%, P < 0.01]. Besides, the transfection lasted for longer time than that of embedded-pDNA-CaPi-PLGA-NPs and the cytotoxicity of it was significantly lower than that of PEI (P < 0.01). These results indicate that CS-pDNA-CaPi-PLGA-NPs are a promising non-viral gene vector. Key words: gene delivery system; polylactic-co-glycolic acid; calcium phosphate; nanoparticle


Asunto(s)
Fosfatos de Calcio/administración & dosificación , ADN/administración & dosificación , Ácido Láctico/administración & dosificación , Ácido Poliglicólico/administración & dosificación , Fosfatos de Calcio/química , Fosfatos de Calcio/toxicidad , Supervivencia Celular/efectos de los fármacos , ADN/química , ADN/toxicidad , Portadores de Fármacos , Vectores Genéticos , Células HEK293 , Humanos , Ácido Láctico/química , Nanopartículas , Tamaño de la Partícula , Plásmidos/genética , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Transfección
15.
Biomaterials ; 293: 121975, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36580720

RESUMEN

Bladder cancer is one of the most common malignant tumors in the urinary system worldwide. The poor permeability and uncontrollable release of drug and hypoxia of tumor tissues were the main reasons leading to poor therapeutic effect of chemo-photodynamic therapy for bladder cancer. To solve the above problems, a tumor-targeting peptide Arg-Gly-Asp (RGD) modified platinum nanozyme (PtNP) co-loaded glutathione (GSH)-responsive prodrug nanoparticles (PTX-SS-HPPH/Pt@RGD-NP) was constructed. Firstly, a GSH-responsive prodrug (PTX-SS-HPPH) was prepared by introducing a disulfide bond between paclitaxel (PTX) and photosensitizer 2-(1-hexyloxyethyl)-2-devinyl pyropheophorbide-a (HPPH), which could realize the GSH-responsive release of the drug at the tumor sites. Also, the distearoylphosphoethanolamine-poly (ethylene glycol)-RGD peptide (DSPE-PEG-RGD) modified the prodrug to enhance the targeting and permeability ability to bladder cancer cells. Besides, to alleviate the hypoxia of tumor tissues, PtNP was introduced to produce oxygen (O2) and improve photodynamic therapy efficiency. The results showed that the PTX-SS-HPPH/Pt@RGD-NP could achieve GSH-responsive drug release in tumor microenvironment, enhance the drug accumulation time and permeability at tumor sites in T24 subcutaneous tumor model and T24 orthotopic bladder tumor model, and alleviate hypoxia in tumor tissues, thus realizing enhanced chemo-photodynamic therapy for bladder cancer, and providing new strategies and methods for clinical treatment of bladder cancer.


Asunto(s)
Nanopartículas , Oligopéptidos , Fotoquimioterapia , Fármacos Fotosensibilizantes , Profármacos , Neoplasias de la Vejiga Urinaria , Humanos , Línea Celular Tumoral , Glutatión , Nanopartículas/química , Oligopéptidos/química , Paclitaxel/uso terapéutico , Paclitaxel/química , Fármacos Fotosensibilizantes/uso terapéutico , Platino (Metal)/uso terapéutico , Polietilenglicoles/química , Profármacos/uso terapéutico , Profármacos/química , Microambiente Tumoral , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico
16.
Biomaterials ; 295: 122036, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36804660

RESUMEN

Osteoarthritis (OA) is a common joint condition that is a leading cause of disability worldwide. There are currently no disease-modifying treatments for osteoarthritis, which is associated with multiple kinds of inflammatory cytokines produced by M1 macrophages in the synovium of the joint. Despite recent therapeutic advancements with anti-cytokine biologics, the OA therapy response rate continues to be inadequate. To treat OA, the pro-inflammatory and anti-inflammatory responses of synoviocytes and macrophages must be controlled simultaneously. Therefore, the immune regulation capabilities of an ideal nano-drug should not only minimize pro-inflammatory responses but also effectively boost anti-inflammatory responses. In this paper, an M2H@RPK nanotherapeutic system was developed, KAFAK and shRNA-LEPR were condensed with polyethylenimine (PEI) to form a complex, which was then modified with hyaluronic acid (HA) to negatively charge to cover the M2 membrane. It was discovered that the repolarization of macrophages from the M1 to the M2 phenotype lowered pro-inflammatory responses while enhancing anti-inflammatory responses in macrophages and synoviocytes. In vitro and in vivo studies demonstrate that M2H@RPK dramatically decreases proinflammatory cytokines, controls synovial inflammation, and provides significant therapeutic efficacy by reducing joint damage. Overall, it has been demonstrated that M2H@RPK provides inflammation-targeted therapy by macrophage repolarization, and it represents a promising OA therapeutic strategy.


Asunto(s)
Nanopartículas , Osteoartritis , Sinovitis , Humanos , Osteoartritis/tratamiento farmacológico , Sinovitis/tratamiento farmacológico , Sinovitis/complicaciones , Inflamación , Macrófagos , Membrana Sinovial , Citocinas , Antiinflamatorios/farmacología , Nanopartículas/uso terapéutico
17.
Research (Wash D C) ; 2022: 9768687, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35233535

RESUMEN

Improving the efficacy of melanoma treatment remains an important global challenge. Here, we combined chemotherapy with protein tyrosine phosphatase nonreceptor type 2(Ptpn2) based immunotherapy in an effort to address this challenge. Short-hairpin RNA (shRNA) targeting Ptpn2 was coencapsulated with doxorubicin (DOX) in the cell membrane of M1 macrophages (M1HD@RPR). The prepared nanoparticles (NPs) were effectively phagocytosed by B16F10 cells and M1 macrophages, but not by M0 macrophages. Hence, NP evasion from the reticuloendothelial system (RES) was improved and NP enrichment in tumor sites increased. M1HD@RPR can directly kill tumor cells and stimulate immunogenic cell death (ICD) by DOX and downregulate Ptpn2. It can promote M1 macrophage polarization and dendritic cell maturation and increase the proportion of CD8+ T cells. M1HD@RPR killed and inhibited the growth of primary melanoma and lung metastatic tumor cells without harming the surrounding tissue. These findings establish M1HD@RPR as a safe multifunctional nanoparticle capable of effectively combining chemotherapy and gene immunotherapies against melanoma.

18.
Biomaterials ; 281: 121328, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34953333

RESUMEN

Chemotherapy drugs play important roles in clinical treatment, and most first-line regimens of cancer therapy contain chemotherapy drugs. In particular, some chemotherapeutic drugs can also produce ICD effect and enhance the immune response of the body. However, most chemotherapy drugs do not specifically target tumors or the complex tumor microenvironment, which renders their curative effect insufficient. Therefore, we constructed a tumor microenvironment-responsive drug delivery system (Ag2S-PAsp-cRGD) combined with doxorubicin (DOX) for tumor therapy. Firstly, Ag2S nanoparticles (NPs) were modified with polymer aspartic acid (PAsp) to construct the drug-loading platform. Then, an active targeting ligand (cRGD) was coupled through an amide reaction to enhance the functional targeting ability of the drug delivery system. In vivo imaging of the system showed that the nanoparticles accumulated in the tumor site, which facilitated the delivery of the chemotherapy drug DOX to the targeted tumor site. Furthermore, the photothermal effect of Ag2S NPs can effectively killed tumor cells, and also helped the release of DOX from nanoparticles into tumor tissue, thus enhancing the chemotherapeutic effect. Moreover, combined with the ICD effect jointly induced by photothermal therapy (PTT) and DOX, the treatment further activated the host immune response against tumors by enhancing the presentation of antigens and promoting the differentiation of T cells. This strategy of photo-chemo-immunotherapy showed excellent antitumor effect, not only eliminating the primary tumor but also preventing recurrence and inhibiting metastasis.


Asunto(s)
Nanopartículas , Fotoquimioterapia , Ácido Aspártico , Línea Celular Tumoral , Doxorrubicina , Inmunidad , Polímeros/farmacología , Microambiente Tumoral
19.
Acta Pharm Sin B ; 12(6): 2710-2730, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35755283

RESUMEN

Breast cancer has become the most commonly diagnosed cancer type in the world. A combination of chemotherapy and photothermal therapy (PTT) has emerged as a promising strategy for breast cancer therapy. However, the intricacy of precise delivery and the ability to initiate drug release in specific tumor sites remains a challenging puzzle. Therefore, to ensure that the therapeutic agents are synchronously delivered to the tumor site for their synergistic effect, a multifunctional nanoparticle system (PCRHNs) is developed, which is grafted onto the prussian blue nanoparticles (PB NPs) by reduction-responsive camptothecin (CPT) prodrug copolymer, and then modified with tumor-targeting peptide cyclo(Asp-d-Phe-Lys-Arg-Gly) (cRGD) and hyaluronic acid (HA). PCRHNs exhibited nano-sized structure with good monodispersity, high load efficiency of CPT, triggered CPT release in response to reduction environment, and excellent photothermal conversion under laser irradiation. Furthermore, PCRHNs can act as a photoacoustic imaging contrast agent-guided PTT. In vivo studies indicate that PCRHNs exhibited excellent biocompatibility, prolonged blood circulation, enhanced tumor accumulation, allow tumor-specific chemo-photothermal therapy to achieve synergistic antitumor effects with reduced systemic toxicity. Moreover, hyperthermia-induced upregulation of heat shock protein 70 in the tumor cells could be inhibited by CPT. Collectively, PCRHNs may be a promising therapeutic way for breast cancer therapy.

20.
Mater Today Bio ; 14: 100226, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35308042

RESUMEN

Background: Sever acute pancreatitis (SAP) is a critical disease with high mortality, and lack of clinically available treatments with specificity and effectiveness. Bone marrow derived mesenchymal stem cells (BMSCs) exhibited moderate effect on AP which needs further improvement. Methods: Pancreatic infiltrating lymphocytes were analyzed to demonstrate the intervention of BMSCs on inflammatory cell infiltration of AP. Gene silencing with siRNA and small molecule inhibitor were utilized to determine the key effector molecule of BMSCs on AP. Pharmacological regulation and nanotechnology were introduced to further ameliorate BMSCs action. Results: It was revealed that BMSCs prevent the progression of acute pancreatitis (AP) by reducing recruitment of macrophages, neutrophils and CD4+T cells in the lesion site. The pivotal role of chemokine-iNOS-IDO axis for BMSCs to intervene AP was confirmed. Compared with any single drug, Chloroquine/Tamoxifen combination together with IFN-γ pronouncedly up-regulated the transcription of several MSC immune regulators such as COX-2, PD-L1, HO-1 especially iNOS/IDO. As expected, BMSCs and human umbilical cord mesenchymal stem cells (UMSCs) pretreated with CQ/TAM/IFN-γ exerted enhanced intervention in AP and SAP mice. Moreover, pretreatment with CQ-LPs/TAM-NPs combination not only counteracted MSCs proliferation inhibition induced by free drugs but also enhanced their efficacy. Conclusion: Under the background of rapid progress in MSCs clinical translation, this study focuses on the urgent clinical issue and initiates an original mechanism-based strategy to promote intervention on severity progression of SAP, which promises its clinical translation in future.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA