RESUMEN
Circulating tumor cells (CTCs) that survive in the blood are playing an important role in the metastasis process of tumor. In addition, they have become a tool for tumor diagnosis, prognosis and recurrence monitoring. CTCs can exist in the blood as individual cells or as clumps of aggregated cells. In recent years, more and more studies have shown that clustered CTCs have stronger metastasis ability compared to single CTCs. With the deepening of studies, scholars have found that cancer cells can combine not only with each other, but also with non-tumor cells present in the blood, such as neutrophils, platelets, etc. At the same time, it was confirmed that non-tumor cells bound to CTCs maintain the survival and proliferation of cancer cells through a variety of ways, thus promoting the occurrence and development of tumor. In this review, we collected information on tumorigenesis induced by CTC clusters to make a summary and a discussion about them. Although CTC clusters have recently been considered as a key role in the transition process, many characteristics of them remain to be deeply explored. A detailed understanding of their vulnerability can prospectively pave the way for new inhibitors for metastasis.
RESUMEN
Metastasis is the leading cause of death in melanoma patients. Aerobic glycolysis is a common metabolic feature in tumor and is closely related to cell growth and metastasis. Kaempferol (KAM) is one of the active ingredients in the total flavonoids of Chinese traditional medicine Sparganii Rhizoma. Studies have shown that it interferes with the cell cycle, apoptosis, angiogenesis and metastasis of tumor cells, but whether it can affect the aerobic glycolysis of melanoma is still unclear. Here, we explored the effects and mechanisms of KAM on melanoma metastasis and aerobic glycolysis. KAM inhibited the migration and invasion of A375 and B16F10 cells, and reduced the lung metastasis of melanoma cells. Extracellular acidification rates (ECAR) and glucose consumption were obviously suppressed by KAM, as well as the production of ATP, pyruvate and lactate. Mechanistically, the activity of hexokinase (HK), the first key kinase of aerobic glycolysis, was significantly inhibited by KAM. Although the total protein expression of HK2 was not significantly changed, the binding of HK2 and voltage-dependent anion channel 1 (VDAC1) on mitochondria was inhibited by KAM through AKT/GSK-3ß signal pathway. In conclusion, KAM inhibits melanoma metastasis via blocking aerobic glycolysis of melanoma cells, in which the binding of HK2 and VDAC1 on mitochondria was broken.