Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Ther ; 31(4): 1002-1016, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-36755495

RESUMEN

Fabry disease (FD), a lysosomal storage disorder, is caused by defective α-galactosidase (GLA) activity, which results in the accumulation of globotriaosylceramide (Gb3) in endothelial cells and leads to life-threatening complications such as left ventricular hypertrophy (LVH), renal failure, and stroke. Enzyme replacement therapy (ERT) results in Gb3 clearance; however, because of a short half-life in the body and the high immunogenicity of FD patients, ERT has a limited therapeutic effect, particularly in patients with late-onset disease or progressive complications. Because vascular endothelial cells (VECs) derived from FD-induced pluripotent stem cells display increased thrombospondin-1 (TSP1) expression and enhanced SMAD2 signaling, we screened for chemical compounds that could downregulate TSP1 and SMAD2 signaling. Fasudil reduced the levels of p-SMAD2 and TSP1 in FD-VECs and increased the expression of angiogenic factors. Furthermore, fasudil downregulated the endothelial-to-mesenchymal transition (EndMT) and mitochondrial function of FD-VECs. Oral administration of fasudil to FD mice alleviated several FD phenotypes, including LVH, renal fibrosis, anhidrosis, and heat insensitivity. Our findings demonstrate that fasudil is a novel candidate for FD therapy.


Asunto(s)
Enfermedad de Fabry , Animales , Ratones , Enfermedad de Fabry/tratamiento farmacológico , Enfermedad de Fabry/genética , Células Endoteliales/metabolismo , alfa-Galactosidasa/genética , Fenotipo , Terapia de Reemplazo Enzimático
2.
J Cell Mol Med ; 25(14): 6976-6987, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34114341

RESUMEN

Krüppel-like factor 4 (KLF4) is a zinc-finger containing DNA-binding transcription factor involved in tumorigenesis and acts as a tumour suppressor or an oncogene depending on the tissue. In hepatocellular carcinoma (HCC), KLF4 has been considered as a tumour suppressor, although the mechanism underlying its action remains largely unknown. In this study, we identified the ubiquitin-specific peptidase USP11 as a KLF4-interacting deubiquitinating enzyme using a proteomic approach. USP11 destabilizes KLF4 through the removal of K63-dependent polyubiquitination, thereby inhibiting KLF4 expression. We also provide mechanistic insights into KLF4 degradation and show that USP11 depletion inhibits growth and chemoresistance of HCC cells by enhancing KLF4 stability. Importantly, lipid content was reduced and genes involved in fatty acid metabolism were down-regulated in an in vitro steatosis conditions upon USP11 knockout. Finally, elevated USP11 and reduced KLF4 levels were detected both in a hepatic steatosis in vitro model and in public clinical data of non-alcoholic fatty liver disease and HCC patients. Collectively, these findings suggest that USP11, as KLF4-binding partner, is an important mediator of hepatic tumorigenesis that functions via degradation of KLF4 and is a potential treatment target for liver diseases.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Hígado Graso/metabolismo , Neoplasias Hepáticas/metabolismo , Tioléster Hidrolasas/metabolismo , Ácidos Grasos/metabolismo , Células HEK293 , Células Hep G2 , Humanos , Factor 4 Similar a Kruppel/metabolismo , Unión Proteica , Ubiquitinación
3.
Mol Cell ; 46(4): 484-94, 2012 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-22542455

RESUMEN

The NAD-dependent histone deacetylase Sirt1 antagonizes p53 transcriptional activity to regulate cell-cycle progression and apoptosis. We have identified a ubiquitin-specific peptidase, USP22, one of the 11 death-from-cancer signature genes that are critical in controlling cell growth and death, as a positive regulator of Sirt1. USP22 interacts with and stabilizes Sirt1 by removing polyubiquitin chains conjugated onto Sirt1. The USP22-mediated stabilization of Sirt1 leads to decreasing levels of p53 acetylation and suppression of p53-mediated functions. In contrast, depletion of endogenous USP22 by RNA interference destabilizes Sirt1, inhibits Sirt1-mediated deacetylation of p53 and elevates p53-dependent apoptosis. Genetic deletion of the usp22 gene results in Sirt1 instability, elevated p53 transcriptional activity and early embryonic lethality in mice. Our study elucidates a molecular mechanism in suppression of cell apoptosis by stabilizing Sirt1 in response to DNA damage and reveals a critical physiological function of USP22 in mouse embryonic development.


Asunto(s)
Desarrollo Embrionario/fisiología , Endopeptidasas/metabolismo , Sirtuina 1/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Apoptosis/genética , Apoptosis/fisiología , Daño del ADN , Desarrollo Embrionario/genética , Endopeptidasas/deficiencia , Endopeptidasas/genética , Estabilidad de Enzimas , Femenino , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Embarazo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sirtuina 1/genética , Activación Transcripcional , Proteasas Ubiquitina-Específicas , Ubiquitinación
4.
Int J Mol Sci ; 21(18)2020 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-32967328

RESUMEN

The incidence of myocardial infarction, among the causes of cardiovascular morbidity and mortality, is increasing globally. In this study, left ventricular (LV) dysfunction, including LV systolic and diastolic function, was investigated in a rat myocardial ischemia/reperfusion injury model with echocardiography. The homoisoflavanone sappanone A is known for its anti-inflammatory effects. Using echocardiography, we found that sappanone A administration significantly improved LV systolic and diastolic function in a rat myocardial ischemia/reperfusion injury model, especially in the early phase development of myocardial infarction. Based on myocardial infarct size, serum cardiac marker assay, and histopathological evaluation, sappanone A showed higher efficacy at the doses used in our experiments than curcumin and was evaluated for its potential to improve LV function.


Asunto(s)
Isoflavonas/farmacología , Daño por Reperfusión Miocárdica/prevención & control , Disfunción Ventricular Izquierda/prevención & control , Animales , Modelos Animales de Enfermedad , Masculino , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Ratas , Ratas Sprague-Dawley , Disfunción Ventricular Izquierda/metabolismo , Disfunción Ventricular Izquierda/patología
5.
J Biol Chem ; 293(28): 11067-11075, 2018 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-29789426

RESUMEN

The type III NAD-dependent histone deacetylase Sirt1 plays important roles in a variety of pathobiological functions through targeting either the acetylated histones or transcription factors. However, the molecular mechanisms underlying how the Sirt1 functions are regulated remain vague. Herein we identified that the Janus kinase 1 (JAK1) interacts with Sirt1 and catalyzes its phosphorylation at the tyrosine residues of 280 and 301, both of which are highly conserved and located in the histone deacetylase catalytic domain of Sirt1. IL-6 stimulation enhanced Sirt1 interaction with JAK1 and JAK1-mediated Sirt1 phosphorylation. Interestingly, JAK1-mediated Sirt1 phosphorylation did not alter Sirt1 deacetylase catalytic activity, but instead it is required for Sirt1 interaction with the downstream transcription factor STAT3. JAK1-mediated phosphorylation enhanced Sirt1 suppression of STAT3 acetylation and transcriptional activity. As a consequence, Sirt1 activation attenuates IL-6 activity in protecting cancer cells from chemotherapeutic drug-induced apoptosis. Our studies identify JAK1 as a previously unappreciated tyrosine kinase of Sirt1 and reveal a novel negative feedback of the JAK1-STAT3 pathway.


Asunto(s)
Retroalimentación Fisiológica , Janus Quinasa 1/metabolismo , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Sirtuina 1/metabolismo , Activación Enzimática , Células HEK293 , Humanos , Janus Quinasa 1/genética , Fosforilación , Factor de Transcripción STAT3/genética , Sirtuina 1/genética , Tirosina
6.
J Pineal Res ; 64(2)2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29149522

RESUMEN

Under endoplasmic reticulum (ER)-stress conditions, the unfolded protein response (UPR) generates a defense mechanism in mammalian cells. The regulation of UPR signaling is important in oocyte maturation, embryo development, and female reproduction of pigs. Recent studies have shown that melatonin plays an important role as an antioxidant to improve pig oocyte maturation. However, there is no report on the role of melatonin in the regulation of UPR signaling and ER-stress during in vitro maturation (IVM) of porcine oocytes. Therefore, the objective of this study was to investigate the antioxidative effects of melatonin on porcine oocyte maturation through the regulation of ER-stress and UPR signaling. We investigated the changes in the mRNA/protein expression levels of three UPR signal genes (Bip/Grp78, ATF4, P90/50ATF6, sXbp1, and CHOP) on oocytes, cumulus cells, and cumulus-oocyte complexes (COCs) during IVM (metaphase I; 22 hours and metaphase II; 44 hours) by Western blot and reverse transcription-polymerase chain reaction analysis. Treatment with the ER-stress inducer, tunicamycin (Tm), significantly increased expression of UPR markers. Additionally, cumulus cell expansion and meiotic maturation of oocytes were reduced in COCs of Tm-treated groups (1, 5, and 10 µg/mL). We confirmed the reducing effects of melatonin (0.1 µmol/L) on ER-stress after pretreatment with Tm (5 µg/mL; 22 hours) in maturing COCs. Addition of melatonin (0.1 µmol/L) to Tm-pretreated COCs recovered meiotic maturation rates and expression of most UPR markers. In conclusion, we confirmed a role for melatonin in the modulation of UPR signal pathways and reducing ER-stress during IVM of porcine oocytes.


Asunto(s)
Antioxidantes/farmacología , Estrés del Retículo Endoplásmico/efectos de los fármacos , Meiosis/efectos de los fármacos , Melatonina/farmacología , Oogénesis/efectos de los fármacos , Animales , Células del Cúmulo/efectos de los fármacos , Femenino , Oocitos/efectos de los fármacos , Porcinos , Respuesta de Proteína Desplegada/efectos de los fármacos
7.
Proteome Sci ; 13: 4, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25670924

RESUMEN

BACKGROUND: Peroxiredoxin V (Prdx V) plays a major role in preventing oxidative damage as an effective antioxidant protein within a variety of cells through peroxidase activity. However, the function of Prdx V is not limited to peroxidase enzymatic activity per se. It appears to have unique function in regulating cellular response to external stimuli by directing interaction with signaling protein. In this study, we identified Prdx V interacting partners in mouse kidney under hypoxic stress using immunoprecipitation and shotgun proteomic analysis (LC-MS/MS). RESULTS: Immunoprecipitation coupled with nano-UPLC-MS(E) shotgun proteomics was employed to identify putative interacting partners of Prdx V in mouse kidney in the setting of hypoxia. A total of 17 proteins were identified as potential interacting partners of Prdx V by a comparative interactomics analysis in kidney under normoxia versus hypoxia. Dihydrolipoamide branched chain transacylase E2 (DBT) appeared to be a prominent candidate protein displaying enhanced interaction with Prdx V under hypoxic stress. Moreover, hypoxic kidney exhibited altered DBT enzymatic activity compared to normoxia. An enhanced colocalization of these two proteins under hypoxic stress was successfully observed in vitro. Furthermore, peroxidatic cysteine residue (Cys48) of Prdx V is likely to be responsible for interacting with DBT. CONCLUSIONS: We identified several proteins interacting with Prdx V under hypoxic condition known to induce renal oxidative stress. In hypoxic condition, we observed an enhanced interaction of Prdx V and DBT protein as well as increased DBT enzymatic activity. The results from this study will contribute to enhance our understanding of Prdx V's role in hypoxic stress and may suggest new directions for future research.

8.
Mol Cell Proteomics ; 12(10): 2674-88, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23824910

RESUMEN

Bone tissue regeneration is orchestrated by the surrounding supporting tissues and involves the build-up of osteogenic cells, which orchestrate remodeling/healing through the expression of numerous mediators and signaling molecules. Periodontal regeneration models have proven useful for studying the interaction and communication between alveolar bone and supporting soft tissue. We applied a quantitative proteomic approach to analyze and compare proteins with altered expression in gingival soft tissue and alveolar bone following tooth extraction. For target identification and validation, hard and soft tissue were extracted from mini-pigs at the indicated times after tooth extraction. From triplicate experiments, 56 proteins in soft tissue and 27 proteins in alveolar bone were found to be differentially expressed before and after tooth extraction. The expression of 21 of those proteins was altered in both soft tissue and bone. Comparison of the activated networks in soft tissue and alveolar bone highlighted their distinct responsibilities in bone and tissue healing. Moreover, we found that there is crosstalk between identified proteins in soft tissue and alveolar bone with respect to cellular assembly, organization, and communication. Among these proteins, we examined in detail the expression patterns and associated networks of ATP5B and fibronectin 1. ATP5B is involved in nucleic acid metabolism, small molecule biochemistry, and neurological disease, and fibronectin 1 is involved in cellular assembly, organization, and maintenance. Collectively, our findings indicate that bone regeneration is accompanied by a profound interaction among networks regulating cellular resources, and they provide novel insight into the molecular mechanisms involved in the healing of periodontal tissue after tooth extraction.


Asunto(s)
Encía/metabolismo , Mandíbula/metabolismo , Maxilar/metabolismo , Animales , Regeneración Ósea , Proteómica , Porcinos , Porcinos Enanos
9.
J Biol Chem ; 288(52): 37256-66, 2013 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-24214980

RESUMEN

The type III histone deacetylase Sirt1 has recently emerged as a critical immune regulator by suppressing T cell immunity and macrophage activation during inflammation, but its role in dendritic cells (DCs) remains unknown. Here, we show that mice with genetic Sirt1 deletion specifically in DCs are resistant to MOG-induced experimental autoimmune encephalomyelitis. Loss of Sirt1 functions in DCs enhances their ability to produce IL-27 and interferon ß (IFN-ß). Co-cultivation of Sirt1-null DCs with CD4(+) T cells inhibited Th17 differentiation, which is reversed by anti-IL27 and anti-IFN-ß neutralization antibodies. Sirt1 antagonizes acetylation of IRF1, a transcription factor that drives IL-27 production. Genetic deletion of IRF1 in Sirt1-null DCs abolishes IL-27 production and suppresses Th17 differentiation. Our results show that the histone deacetylase Sirt1 programs DCs to regulate Th17 differentiation during inflammation.


Asunto(s)
Diferenciación Celular/inmunología , Células Dendríticas/inmunología , Encefalomielitis Autoinmune Experimental/inmunología , Factor 1 Regulador del Interferón/inmunología , Sirtuina 1/inmunología , Células Th17/inmunología , Animales , Diferenciación Celular/genética , Células Dendríticas/metabolismo , Células Dendríticas/patología , Encefalomielitis Autoinmune Experimental/inducido químicamente , Encefalomielitis Autoinmune Experimental/genética , Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/patología , Células HEK293 , Humanos , Inflamación/inducido químicamente , Inflamación/genética , Inflamación/inmunología , Inflamación/metabolismo , Factor 1 Regulador del Interferón/genética , Factor 1 Regulador del Interferón/metabolismo , Interferón beta/genética , Interferón beta/inmunología , Interferón beta/metabolismo , Interleucinas/genética , Interleucinas/inmunología , Interleucinas/metabolismo , Ratones , Ratones Noqueados , Glicoproteína Mielina-Oligodendrócito/toxicidad , Sirtuina 1/genética , Sirtuina 1/metabolismo , Células Th17/metabolismo , Células Th17/patología
10.
J Exp Med ; 204(3): 583-94, 2007 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-17325201

RESUMEN

Mammalian 2-Cys peroxiredoxin II (Prx II) is a cellular peroxidase that eliminates endogenous H(2)O(2). The involvement of Prx II in the regulation of lipopolysaccharide (LPS) signaling is poorly understood. In this report, we show that LPS induces substantially enhanced inflammatory events, which include the signaling molecules nuclear factor kappaB and mitogen-activated protein kinase (MAPK), in Prx II-deficient macrophages. This effect of LPS was mediated by the robust up-regulation of the reactive oxygen species (ROS)-generating nicotinamide adenine dinucleotide phosphate (NADPH) oxidases and the phosphorylation of p47(phox). Furthermore, challenge with LPS induced greater sensitivity to LPS-induced lethal shock in Prx II-deficient mice than in wild-type mice. Intravenous injection of Prx II-deficient mice with the adenovirus-encoding Prx II gene significantly rescued mice from LPS-induced lethal shock as compared with the injection of a control virus. The administration of catalase mimicked the reversal effects of Prx II on LPS-induced inflammatory responses in Prx II-deficient cells, which suggests that intracellular H(2)O(2) is attributable, at least in part, to the enhanced sensitivity to LPS. These results indicate that Prx II is an essential negative regulator of LPS-induced inflammatory signaling through modulation of ROS synthesis via NADPH oxidase activities and, therefore, is crucial for the prevention of excessive host responses to microbial products.


Asunto(s)
Endotoxinas/inmunología , Lipopolisacáridos/toxicidad , Peroxidasas/fisiología , Choque/inmunología , Choque/prevención & control , Animales , Línea Celular , Células Cultivadas , Inflamación/genética , Inflamación/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Peroxidasas/deficiencia , Peroxidasas/genética , Peroxirredoxinas , Choque/genética , Choque/mortalidad , Transducción de Señal/genética , Transducción de Señal/inmunología
11.
Elife ; 122023 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-36735291

RESUMEN

Peroxiredoxin 5 (Prdx5) is involved in pathophysiological regulation via the stress-induced cellular response. However, its function in the bone remains largely unknown. Here, we show that Prdx5 is involved in osteoclast and osteoblast differentiation, resulting in osteoporotic phenotypes in Prdx5 knockout (Prdx5Ko) male mice. To investigate the function of Prdx5 in the bone, osteoblasts were analyzed through immunoprecipitation (IP) and liquid chromatography combined with tandem mass spectrometry (LC-MS/MS) methods, while osteoclasts were analyzed through RNA-sequencing. Heterogeneous nuclear ribonucleoprotein K (hnRNPK) was identified as a potential binding partner of Prdx5 during osteoblast differentiation in vitro. Prdx5 acts as a negative regulator of hnRNPK-mediated osteocalcin (Bglap) expression. In addition, transcriptomic analysis revealed that in vitro differentiated osteoclasts from the bone marrow-derived macrophages of Prdx5Ko mice showed enhanced expression of several osteoclast-related genes. These findings indicate that Prdx5 might contribute to the maintenance of bone homeostasis by regulating osteoblast differentiation. This study proposes a new function of Prdx5 in bone remodeling that may be used in developing therapeutic strategies for bone diseases.


Asunto(s)
Ribonucleoproteína Heterogénea-Nuclear Grupo K , Osteogénesis , Animales , Masculino , Ratones , Regeneración Ósea , Diferenciación Celular , Cromatografía Liquida , Ribonucleoproteína Heterogénea-Nuclear Grupo K/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo K/metabolismo , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Espectrometría de Masas en Tándem
12.
Proteomics ; 12(1): 101-12, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22113967

RESUMEN

Peroxiredoxin II (Prdx II, a typical 2-Cys Prdx) has been originally isolated from erythrocytes, and its structure and peroxidase activity have been adequately studied. Mice lacking Prdx II proteins had heinz bodies in their peripheral blood, and morphologically abnormal cells were detected in the dense red blood cell (RBC) fractions, which contained markedly higher levels of reactive oxygen species (ROS). In this study, a labeling experiment with the thiol-modifying reagent biotinylated iodoacetamide (BIAM) in Prdx II-/- mice revealed that a variety of RBC proteins were highly oxidized. To identify oxidation-sensitive proteins in Prdx II-/- mice, we performed RBC comparative proteome analysis in membrane and cytosolic fractions by nano-UPLC-MSE shotgun proteomics. We found oxidation-sensitive 54 proteins from 61 peptides containing cysteine oxidation, and analyzed comparative expression pattern in healthy RBCs of Prdx II+/+ mice, healthy RBCs of Prdx II-/- mice, and abnormal RBCs of Prdx II-/- mice. These proteins belonged to cellular functions related with RBC lifespan maintain, such as cytoskeleton, stress-induced proteins, metabolic enzymes, signal transduction, and transporters. Furthermore, protein networks among identified oxidation-sensitive proteins were analyzed to associate with various diseases. Consequently, we expected that RBC proteome might provide clues to understand redox-imbalanced diseases.


Asunto(s)
Cisteína/metabolismo , Eritrocitos/metabolismo , Peroxirredoxinas/genética , Proteoma/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/metabolismo , Eritrocitos/enzimología , Técnicas de Inactivación de Genes , Homeostasis , Yodoacetamida/química , Espectrometría de Masas , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Datos de Secuencia Molecular , Oxidación-Reducción , Fragmentos de Péptidos/química , Peroxirredoxinas/metabolismo , Mapas de Interacción de Proteínas , Proteoma/química
13.
Biochem Biophys Res Commun ; 427(3): 587-92, 2012 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-23022194

RESUMEN

Although total UBA1 levels were unchanged, after oxidation for 60 min, we observed dramatic changes in the levels of BIAM-labeled UBA1 in both the membrane and cytosol fractions that suggested oxidative stress induces translocation of UBA1 from the cytosol to the membrane. Notably, in PrdxII(-/-) oxRBCs, ubiquitination levels were reduced about 75% in the membrane fraction after 90 min, even though UBA1 levels were increased. These results suggest ubiquitination levels are determined by UBA1 activity, not the level of UBA1 protein. Levels of ubiquitin conjugate (denoted ∼Ub) in HEK293T and CMT93 cells transfected with UBA1(C278S) or UBA1(C632S) were lower than in cells expressing UBA1(WT) or another cysteine mutant. During the reaction, UBA1(WT)∼Ub was nearly completely eliminated within 30 min, whereas UBA1(C278S)∼Ub and UBA1(C632S)∼Ub persisted. Within UBA1(C278S)∼Ub, the catalytic cysteine (Cys-632) remained intact; nonetheless, migration of UBA1(C278S)∼Ub and UBA1(C632S)∼Ub were similar. These data suggest that Cys-278 can affect Ub charging through a change in the structural conformation of UBA1, not through direct interaction at the UBA1-Ub interface.


Asunto(s)
Cisteína/metabolismo , Enzimas Activadoras de Ubiquitina/metabolismo , Ubiquitinación , Animales , Cisteína/química , Cisteína/genética , Células HEK293 , Humanos , Ratones , Mutación , Enzimas Activadoras de Ubiquitina/química , Enzimas Activadoras de Ubiquitina/genética
14.
Toxicol In Vitro ; 82: 105374, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35537566

RESUMEN

Drug-induced liver injury (DILI) is an adverse hepatic reaction and a serious concern for public healthcare systems and pharmaceutical companies. DILI is frequently caused by a combination of direct toxic stresses and subsequent immune damage to hepatocytes. However, little is known about the mechanism by which drugs facilitate the activation of the innate immune system. Here, we aimed to decipher the inflammatory events in trovafloxacin (TVX)-induced reactions using liver macrophages. We showed that proinflammatory M1-like macrophages mainly contributed to hepatotoxicity mediated by TVX, a DILI drug. Additionally, transcriptome results showed that the interferon type I pathway, cytokines, and apoptosis pathway were involved in the initiation of synergistic effects resulting in TVX-induced liver injury. We hypothesized that DILI drugs could drive liver injury by altering the activation and phenotype of hepatic macrophages. Furthermore, drug treatment-induced transcriptional changes such as Traf1 and 2, Socs3, and Hbegf in macrophage polarization could be used to assess drug-specific immune-mediated reactions. Therefore, we proposed that transcriptional change in the genes related to macrophage polarization index could be an indicator to reflect the severity of DILI in a preclinical setting during drug development.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Fluoroquinolonas , Humanos , Inflamación/inducido químicamente , Inflamación/metabolismo , Hígado/metabolismo , Macrófagos , Naftiridinas/metabolismo , Naftiridinas/toxicidad
15.
Oncol Res ; 19(8-9): 391-8, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22329198

RESUMEN

(-)-Epigallocatechin 3-gallate (EGCG) is a potent antioxidant polyphenol in green tea that acts as an anticancer agent via both direct and indirect pathways. Although the relationship between EGCG's anticancer effects and its antioxidant activity is not fully understood, it is known that EGCG stimulates production of reactive oxygen species (ROS), which induce oxidative stress leading to cell death. In IM9 multiple myeloma cells, EGCG acted in a dose- and time-dependent manner to induce apoptotic cell death. Among the antioxidant enzymes expressed in IM9 cells, levels of peroxiredoxin V (PrdxV) were selectively and significantly reduced by EGCG. Moreover, the ROS scavenger NAC completely inhibited EGCG-induced apoptosis and PrdxV reduction, while overexpression of PrdxV, but not a Prdx(VC48S) mutant, protected IM9 cells from EGCG-induced apoptosis. EGCG-induced reductions in cell viability and PrdxV levels were also observed in primary CD138+ multiple myeloma cells from patients. These results suggest that PrdxV is a key target via which EGCG mediates its anticancer effects.


Asunto(s)
Apoptosis/efectos de los fármacos , Catequina/análogos & derivados , Mieloma Múltiple/enzimología , Peroxirredoxinas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Acetilcisteína/farmacología , Catequina/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Peroxirredoxinas/metabolismo , Fosforilación/efectos de los fármacos , Células Plasmáticas/efectos de los fármacos , Células Plasmáticas/inmunología , Especies Reactivas de Oxígeno , Sindecano-1 , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
16.
J Infect Dis ; 201(1): 97-105, 2010 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-19919301

RESUMEN

Infection with the human pathogen Vibrio vulnificus leads to the generation of reactive oxygen species (ROS) via NAD(P)H oxidase (Nox) in host cells. In the present study, we employed mutant V. vulnificus strains to identify an essential virulence factor responsible for this ROS generation. We found that repeats-in-toxin A1 (RtxA1) expressed by V. vulnificus acts via Nox1 to induce significant ROS generation in the intestine epithelial cells, which ultimately results in cell death. Furthermore, RtxA1 modulates the small GTPase Rac2, which is known to play an important role in the activation of Nox. When mice were infected by the oral method, in contrast with the wild-type bacteria, an RtxA1-deficient V. vulnificus mutant was unable to induce ROS generation within the intestine and failed to cause death. These findings strongly suggest that RtxA1-induced Rac2 expression is a critical step underlying the pathogenicity of V. vulnificus.


Asunto(s)
Toxinas Bacterianas/metabolismo , Células Epiteliales/microbiología , Vibriosis/microbiología , Vibrio vulnificus/patogenicidad , Proteínas de Unión al GTP rac/metabolismo , Animales , Células CACO-2 , Humanos , Mucosa Intestinal/microbiología , Ratones , NADPH Oxidasa 1 , NADPH Oxidasas , Especies Reactivas de Oxígeno/metabolismo , Vibrio vulnificus/metabolismo , Proteína RCA2 de Unión a GTP
17.
Ann Pediatr Endocrinol Metab ; 26(1): 24-30, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32871647

RESUMEN

PURPOSE: Autosomal dominant hypocalcemia with hypercalciuria is a genetic disease characterized by hypoparathyroidism with hypercalciuria. We discovered a novel variant (p.Tyr825Phe[Y825F]) of the CASR gene in a neonate with congenital hypoparathyroidism and hypercalciuria and conducted a cell function study to determine whether the CASR-Y825F variant was pathogenic. METHODS: To perform a functional study on CaSR-Y825F, we constructed expression vectors expressing wild-type (WT) CASR and CASR-Y825F. After transfection of each expression vector into HEK293 cells, we examined alterations in intracellular signaling. Mitogen-activated protein kinase (MAPK) signaling activity of HEK293 cells expressing CASR-WT or CASR-Y825F was determined. Changes in intracellular calcium ions ([Ca2+]i) by extracellular calcium ion ([Ca2+]e) stimulation were quantitatively compared and analyzed. RESULTS: Cells expressing CASR-Y825F showed elevated of MAPK signaling (phospho-ERK [pERK], phospho-JNK [pJNK], phospho-p38 [pp38]) and increased [Ca2+]i levels at low [Ca2+]e stimulation compared with cells expressing CASR-WT. Additionally, [Ca2+]i levels in HEK293 cells expression CASR-WT and CASR-Y825F were determined at 340 nm/380 nm wavelength ratios using Fura-2 AM. At [Ca2+]e concentrations of 2.5 mM and 3 mM, the ratios of CASR-Y825F cells were higher (2.6 and 3.5, respectively) than those of CASR-WT cells (1.04 and 1.40, respectively). CONCLUSION: This cell function study proved that the CASR-Y825F expressed in HEK293 cells elevated MAPK signaling (pERK, pJNK, pp38) and increased [Ca2+]i to induce hypocalcemia.

18.
J Proteome Res ; 9(8): 4003-15, 2010 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-20553050

RESUMEN

Peroxiredoxin V, an atypical thioredoxin peroxidase, is widely expressed in mammalian tissues. In addition, Prdx V is localized in mitochondria, peroxisome, cytosol, and the nucleus. Prdx V has been reported to protect a wide range of cellular environments as an antioxidant enzyme, and its dysfunctions may be implicated in several diseases, such as cancer, inflammation, and neurodegenerative disease. Identification and relative quantification of proteins affected by Prdx V may help identify novel signaling mechanisms that are important for oxidative stress response. However, the role of Prdx V in the modulation of hypoxia-related cellular response is not studied yet. To examine the function of endogenous Prdx V in hypoxic condition in vivo, we generated a transgenic mouse model with Prdx V siRNA expression controlled by U6 promoter. Of many tissues, the knockdown of Prdx V expression was displayed in the kidney, lung, and liver but not the spleen and skin. We conducted on the basis of nano-UPLC-MS(E) proteomic study to identify the Prdx V-affected protein networks in hypoxic kidneys. In this study, we identified protein networks associated with oxidative stress, fatty acid metabolism, and mitochondrial dysfunction. Our results indicated that Prdx V affected to regulation of kidney homeostasis under hypoxia stress.


Asunto(s)
Hipoxia de la Célula/fisiología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/fisiología , Riñón/metabolismo , Estrés Oxidativo/fisiología , Peroxirredoxinas/metabolismo , Proteómica/métodos , Transducción de Señal/fisiología , Animales , Western Blotting , Cromatografía Liquida , Biología Computacional , Cartilla de ADN/genética , Técnicas de Silenciamiento del Gen , Ratones , Ratones Transgénicos , Peroxirredoxinas/deficiencia , Espectrometría de Masas en Tándem
19.
J Neurochem ; 114(1): 39-50, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20345759

RESUMEN

Reactive oxygen species (ROS) actively participate in microglia-mediated pathogenesis as pro-inflammatory molecules. However, little is known about the involvement of specific antioxidants in maintaining the microglial oxidative balance. We demonstrate that microglial peroxiredoxin (Prx) 5 expression is up-regulated by lipopolysaccharide (LPS) through activation of the ROS-sensitive signaling pathway and is involved in attenuation of both microglial activation and nitric oxide (NO) generation. Unlike in stimulation of oxidative insults with paraquat and hydrogen peroxide, Prx V expression is highly sensitive to LPS-stimulation in microglia. Reduction of ROS level by treatment with either NADPH oxidase inhibitor or antioxidant ablates LPS-mediated Prx V up-regulation in BV-2 microglial cells and is closely associated with the activation of the c-jun N-terminal kinase (JNK) signaling pathway. This suggests the involvement of ROS/JNK signaling in LPS-mediated Prx V induction. Furthermore, NO induces Prx V up-regulation that is ablated by the addition of inducible nitric oxide synthase inhibitor or deleted mutation of inducible nitric oxide synthase in LPS-stimulated microglia. Therefore, these results suggest that Prx V is induced by cooperative action among the ROS, RNS, and JNK signaling cascades. Interestingly, knockdown of Prx V expression causes the acceleration of microglia activation, including augmented ROS generation and JNK-dependent NO production. In summary, we demonstrate that Prx V plays a key role in the microglial activation process through modulation of the balance between ROS/NO generation and the corresponding JNK cascade activation.


Asunto(s)
Proteínas Quinasas JNK Activadas por Mitógenos/fisiología , Microglía/metabolismo , Óxido Nítrico/biosíntesis , Peroxirredoxinas/fisiología , Especies Reactivas de Oxígeno/metabolismo , Animales , Células Cultivadas , Técnicas de Silenciamiento del Gen , Lipopolisacáridos/farmacología , Masculino , Ratones , Ratones Endogámicos ICR , Mutación , NADPH Oxidasas/antagonistas & inhibidores , NADPH Oxidasas/fisiología , Óxido Nítrico Sintasa de Tipo II/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo II/genética , Oxidación-Reducción , Peroxirredoxinas/biosíntesis , Peroxirredoxinas/genética , Especies de Nitrógeno Reactivo/metabolismo , Transducción de Señal , Regulación hacia Arriba
20.
Sci Rep ; 10(1): 6017, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32265495

RESUMEN

It has been reported that chitosan has a hemostatic effect and an antibiotic activity. This study aimed to evaluate the efficacy and feasibility of using a chitosan tampon (Hemoblock-Tampon) in preventing hemorrhage and enhancing wound healing after the loop electrosurgical excision procedure (LEEP).This single-blind, prospective, randomized study included 62 consecutive patients who underwent LEEP for cervical intraepithelial neoplasia. A chitosan tampon (31 patients; treatment group), or a general tampon (31 patients; control group) was applied to the uterine cervix immediately after LEEP. One patient in the treatment group declined to participate in this study. Thus, 30 patients in the treatment group and 31 patients in the control group completed this study. For objective analysis of hemorrhage in the postoperative 2 weeks, the amounts of bleeding were checked daily with a pictorial blood assessment chart. We evaluated vaginal discharge, abdominal pain, and impairment in daily living during the postoperative 2 weeks using 5 visual analogue scale questionnaires.The bleeding count was significantly lower in the treatment group than in the control group (21.37 ± 16.86 vs. 40.52 ± 16.55, p = 0.0014). The sum of the scores of the 5 questionnaires was significantly lower in the treatment group than in the control group (6.53 ± 2.84 vs. 8.59 ± 2.88, p = 0.0079). The incidence of vaginal discharge was significantly lower in the treatment group than in the control group (20.0% vs. 48.4%, p = 0.0207). According to logistic regression, only the use of chitosan tampon reduced the risk of moderate to severe vaginal bleeding 2 weeks after surgery (Odd ratio, 0.213; 95% confidence interval, 0.06-0.76; p = 0.0172). Complete healing of the uterine cervix occurred in 86.7% of patients in the treatment group and in 61.3% of patients in the control group at 4 weeks after surgery (p = 0.0255).The use of chitosan tampons can reduce hemorrhage, vaginal discharge, abdominal pain, and impairment of daily living after LEEP. Moreover, chitosan tampon may help enhance wound healing.


Asunto(s)
Quitosano/uso terapéutico , Electrocirugia/métodos , Hemorragia/prevención & control , Hemostáticos/uso terapéutico , Adulto , Coagulación Sanguínea/efectos de los fármacos , Electrocirugia/efectos adversos , Femenino , Humanos , Persona de Mediana Edad , Estudios Prospectivos , Calidad de Vida , Útero/efectos de los fármacos , Útero/cirugía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA