Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Syst Evol Microbiol ; 71(12)2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34882528

RESUMEN

A Gram-stain-negative bacterium, designated as YN2T, that is capable of degrading 1,4-dioxane, was isolated from active sludge collected from a wastewater treatment plant in Harbin, PR China. Cells of strain YN2T were aerobic, motile, pleomorphic rods, mostly twisted, and contained the water-insoluble yellow zeaxanthin dirhamnoside. Strain YN2T grew at 10-40 °C (optimum, 30 °C), pH 5.0-8.0 (pH 7.0) and with 0-1 % (w/v) NaCl (0.1 %). It also could grow chemolithoautotrophically and fix N2 when no ammonium or nitrate was supplied. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain YN2T belongs to the genus Xanthobacter and shares the highest pairwise identity with Xanthobacter autotrophicus 7cT (98.6 %) and Xanthobacter flavus 301T (98.4 %). The major respiratory quinone was ubiquinone-10. Chemotaxonomic analysis revealed that the strain possesses C16 : 0, C19 : 0 cyclo ω8c and C18 : 1 ω7c as the major fatty acids. The DNA G+C content was 67.95 mol%. Based on genome sequences, the DNA-DNA hybridization estimate values between strain YN2T and X. autotrophicus 7cT, X. flavus 301T and X. tagetidis TagT2CT (the only three species of Xanthobacter with currently available genomes) were 31.70, 31.30 and 28.50 %; average nucleotide identity values were 85.23, 84.84 and 83.59 %; average amino acid identity values were 81.24, 80.23 and 73.57 %. Based on its phylogenetic, phenotypic, and physiological characteristics, strain YN2T is considered to represent a novel species of the genus Xanthobacter, for which the name Xanthobacter dioxanivorans sp. nov. is proposed. The type strain is YN2T (=CGMCC 1.19031T=JCM 34666T).


Asunto(s)
Dioxanos/metabolismo , Filogenia , Aguas del Alcantarillado/microbiología , Xanthobacter , Técnicas de Tipificación Bacteriana , Composición de Base , China , ADN Bacteriano/genética , Ácidos Grasos/química , Hibridación de Ácido Nucleico , Fosfolípidos/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Ubiquinona/análogos & derivados , Ubiquinona/química , Purificación del Agua , Xanthobacter/clasificación , Xanthobacter/aislamiento & purificación
2.
Curr Microbiol ; 78(3): 992-1005, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33547937

RESUMEN

1,4-Dioxane is a highly toxic and carcinogenic pollutant found worldwide in groundwater and soil environments. Several microorganisms have been isolated by their ability to grow on 1,4-dioxane; however, low 1,4-dioxane tolerance and slow degradation kinetics remain obstacles for their use in 1,4-dioxane bioremediation. We report here the isolation and characterization of a new strain, Xanthobacter sp. YN2, capable of highly efficient 1,4-dioxane degradation. High degradation efficiency and high tolerance to 1,4-dioxane make this new strain an ideal candidate for the biodegradation of 1,4-dioxane in various treatment facilities. The maximum degradation rate of 1,4-dioxane was found to be 1.10 mg-1,4-dioxane/h mg-protein. Furthermore, Xanthobacter sp. YN2 was shown to grow in the presence of higher than 3000 mg/L 1,4-dioxane with little to no degradation inhibition. In addition, Xanthobacter sp. YN2 could grow on and degrade 1,4-dioxane at pH ranges 5 to 8 and temperatures between 20 and 40 °C. Xanthobacter sp. YN2 was also found to be able to grow on a variety of other substrates including several analogs of 1,4-dioxane. Genome sequence analyses revealed the presence of two soluble di-iron monooxygenase (SDIMO) gene clusters, and regulation studies determined that all of the genes in these two clusters were upregulated in the presence of 1,4-dioxane. This study provides insights into the bacterial stress response and the highly efficient biodegradation of 1,4-dioxane as well as the identification of a novel Group-2 SDIMO.


Asunto(s)
Dioxanos , Xanthobacter , Bacterias , Biodegradación Ambiental
3.
Int J Mol Sci ; 22(19)2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34638775

RESUMEN

Biodegradation of 1,4-dioxane (dioxane) contamination has gained much attention for decades. In our previous work, we isolated a highly efficient dioxane degrader, Xanthobacter sp. YN2, but the underlying mechanisms of its extraordinary degradation performance remained unresolved. In this study, we performed a comparative transcriptome analysis of YN2 grown on dioxane and citrate to elucidate its genetic degradation mechanism and investigated the transcriptomes of different dioxane degradation stages (T0, T24, T48). We also analyzed the transcriptional response of YN2 over time during which the carbon source switched from citrate to dioxane. The results indicate that strain YN2 was a methylotroph, which provides YN2 a major advantage as a pollutant degrader. A large number of genes involved in dioxane metabolism were constitutively expressed prior to dioxane exposure. Multiple genes related to the catabolism of each intermediate were upregulated by treatment in response to dioxane. Glyoxylate metabolism was essential during dioxane degradation by YN2, and the key intermediate glyoxylate was metabolized through three routes: glyoxylate carboligase pathway, malate synthase pathway, and anaplerotic ethylmalonyl-CoA pathway. Genes related to quorum sensing and transporters were significantly upregulated during the early stages of degradation (T0, T24) prior to dioxane depletion, while the expression of genes encoding two-component systems was significantly increased at late degradation stages (T48) when total organic carbon in the culture was exhausted. This study is the first to report the participation of genes encoding glyoxalase, as well as methylotrophic genes xoxF and mox, in dioxane metabolism. The present study reveals multiple genetic and transcriptional strategies used by YN2 to rapidly increase biomass during growth on dioxane, achieve high degradation efficiency and tolerance, and adapt to dioxane exposure quickly, which provides useful information regarding the molecular basis for efficient dioxane biodegradation.


Asunto(s)
Adaptación Fisiológica , Biomasa , Dioxanos/metabolismo , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica , Xanthobacter/metabolismo , Xanthobacter/genética
4.
J Environ Manage ; 280: 111834, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33348228

RESUMEN

Palladium (Pd) is extremely expensive due to its scarcity and excellent catalytic performance. Thus, the recovery of Pd has become increasingly important. Herein, microbial extracellular polymeric substances (EPS) and magnetic nanocomposite EPS@Fe3O4 were applied to recover Pd catalysts from Pd(II) wastewater. Results indicated that Pd(II) was reduced to Pd (0), which was then adsorbed by EPS (101.21 mg/g) and EPS@Fe3O4 (126.30 mg/(g EPS)). After adsorbing Pd, EPS@Fe3O4 could be collected by magnetic separation. The recovered Pd showed excellent catalytic activity in the reduction of methylene blue (MB). The pseudo-second-order kinetic model and Redlich-Peterson model best fit the adsorption results. According to spectral analysis, Pd(II) was reduced to Pd (0) by chemical groups in EPS and EPS@Fe3O4, and the hydroxyl had a chelating effect on adsorbed Pd. Therefore, EPS@Fe3O4 is an efficient adsorbent for recovering Pd from Pd(II) wastewater.


Asunto(s)
Nanocompuestos , Contaminantes Químicos del Agua , Adsorción , Matriz Extracelular de Sustancias Poliméricas/química , Fenómenos Magnéticos , Paladio , Contaminantes Químicos del Agua/análisis
5.
Environ Res ; 183: 109248, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32085997

RESUMEN

The C/N ratio in wastewater differs in place and time and affects the nitrogen removal performance of wastewater treatment. However, studies have focused only on the direct relationship between C/N and nitrogen removal efficiency but disregarded the significant role of soluble microbial products (SMPs) as an intermediate electron station. In this work, the contribution of SMPs to TN removal for treating wastewater with different C/N in a sequencing batch reactor (SBR) was investigated to extend relevance from C/N-TN removal to C/N-SMP-TN removal. TN removal efficiency was improved by increasing the influent C/N. The relative contribution of SMPs increased from 15% (C/N = 2) to 54% (C/N = 8), including 25.5% via utilization-associated product (UAP)-dependent denitrification and 28.5% via biomass-associated product (BAP)-dependent denitrification. The direct contribution of influent organic substrates dramatically decreased from 85.1% to 46%. In addition, providing an anoxic phase effectively enhanced BAP-dependent denitrification and achieved an increment of the SMP absolute contribution from 20.3% to 43% at C/N = 8 with 6.7 mg/L of TN additionally removed. This work clarified the significant contribution of SMPs to the nitrogen removal process, particularly in treating wastewater with high C/N. It also presented a new strategy for improving nitrogen removal performance via SMP reclamation.


Asunto(s)
Desnitrificación , Nitrógeno , Eliminación de Residuos Líquidos , Reactores Biológicos , Electrones , Aguas Residuales
6.
Environ Res ; 189: 109950, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32980022

RESUMEN

The extracellular polymeric substances coating magnetic powders-supported nano zero-valent iron (nZVI@EPS@Fe3O4) was synthesized, using reduction and adsorption to treat Sb(V) wastewater. The adsorption performance and mechanism were investigated under aerobic and anaerobic conditions. The adsorption capacity of nZVI@EPS@Fe3O4 (79.56 mg/g at pH = 5) was improved compared to that of the original materials (60.74 mg/g). The spectral analysis shows that both nZVI and EPS@Fe3O4 in nZVI@EPS@Fe3O4 played an important role in reducing Sb(V) to Sb(III) and adsorbing Sb. The reducibility and adsorption capacity of nZVI@EPS@Fe3O4 towards Sb(V) remained strong under aerobic condition (62% Sb(III), 79.56 mg/g), although they were slightly weaker than those under anaerobic condition (74% Sb(III), 91.78 mg/g). nZVI@EPS@Fe3O4 showed good performance in regeneration experiments. nZVI@EPS@Fe3O4 is promising as a cost-effective and highly efficient material for Sb(V)-contaminated water. This study is meaningful in understanding the redox behaviour of nZVI composites in aerobic and anaerobic conditions.


Asunto(s)
Nanocompuestos , Contaminantes Químicos del Agua , Adsorción , Anaerobiosis , Matriz Extracelular de Sustancias Poliméricas/química , Fenómenos Magnéticos , Contaminantes Químicos del Agua/análisis
7.
Water Environ Res ; 91(2): 93-100, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30735302

RESUMEN

Mycelial pellets, as a novel biomass material, can adsorb pollutants as a biosorbent, or combine other substances and organisms to form self-immobilized biomixture (SIB) to remove pollutants from wastewater. The pellets are eco-friendly, have a good self-immobilization capacity, and are easy to filter. In addition, some mycelial fungi can remove the pollutants in water through biodegradation. This study reviewed biomixture based on mycelial pellets and the two ways, through which SIB remove pollutants in water: pure pellets and the pellets with other materials. The characteristics and functions of each part of SIB were discussed. The study also highlighted the shortcomings of the technology and provided recommendations for further development of this technology.


Asunto(s)
Biomasa , Micelio/metabolismo , Aguas Residuales/química , Purificación del Agua/métodos , Aguas Residuales/microbiología
8.
Int J Phytoremediation ; 19(1): 39-45, 2017 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-27484305

RESUMEN

Arbuscular mycorrhizal fungi (AMF) play a key role in soil carbon storage and release; however, they have never been considered as a factor affecting methane (CH4) emissions from rice paddies. To reveal the role of AMF, the diurnal variations of CH4 emissions from the noninoculated and inoculated rice field plots were compared at midseason drainage, reflooding stage, and end-of-season drainage. The results showed that the diurnal variation patterns in the two treatments both closely tracked soil water content at midseason drainage and end-of-season drainage, while correlated very well with the stomatal conductance of rice at reflooding stage. There were no significant differences between treatments in soil water content and stomatal conductance. However, the diurnal CH4 emission fluxes at the three stages ranged from 4.8 to 39.3, 0.9 to 12.4, and 0.2 to 2.3 mg m-2 h-1 in the noninoculated plots, and those in the inoculated plots ranged from 2.1 to 18.7, 0.9 to 5.0, and 0.3 to 1.2 mg m-2 h-1. The significant differences resulted from carbon-to-nitrogen ratios (C:N) of the noninoculated and inoculated soil, which had a negative linear correlation with maximum diurnal CH4 fluxes. Compared with the noninoculated treatment, inoculating with AMF significantly increased soil C:N by improving the dry matter of rice, which intensified N limit for CH4 production.


Asunto(s)
Contaminantes Atmosféricos/metabolismo , Metano/metabolismo , Micorrizas/fisiología , Oryza/metabolismo , Oryza/microbiología , Agricultura/métodos , China , Monitoreo del Ambiente , Granjas , Estaciones del Año
9.
Int J Phytoremediation ; 19(1): 46-55, 2017 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-27484395

RESUMEN

Atrazine residue in the environment continually damages plants and therefore requires immediate attention and effective development of methods for its decontamination. The effects of Funnelliformis mosseae inoculation on growth and physiology in atrazine-treated Canna indica L. var. flava Roxb. were investigated. At atrazine concentrations up to 15 mg L-1, the growth of C. indica plants were negatively affected. Inoculation with F. mosseae alleviated the atrazine inhibition of plant growth and biomass. Furthermore, the chlorophyll content and root function increased under F. mosseae inoculation, and the oxidative stress of malondialdehyde, peroxidase, and superoxide dismutase activities induced by atrazine were also alleviated by F. mosseae inoculation. The removal rate of atrazine by untreated C. indica was significant, with removal rates of 20.5-55.3% by the end of a 14-day experiment; however, F. mosseae inoculation increased the removal rate to 35.6-75.1%. In conclusion, F. mosseae inoculation can alleviate the damage induced by atrazine in C. indica. Accordingly, C. indica inoculated with F. mosseae has excellent potential to be used in phytoremediation in habitats polluted by high atrazine concentrations.


Asunto(s)
Atrazina/metabolismo , Glomeromycota/fisiología , Herbicidas/metabolismo , Zingiberales/metabolismo , Zingiberales/microbiología , Atrazina/toxicidad , Biodegradación Ambiental , Herbicidas/toxicidad , Contaminantes del Suelo/metabolismo , Contaminantes del Suelo/toxicidad , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/toxicidad
10.
J Environ Manage ; 197: 448-455, 2017 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-28411572

RESUMEN

Arbuscular mycorrhizal (AM) fungi have been reported to play a central role in improving plant tolerance to cadmium (Cd)-contaminated sites. This is achieved by enhancing both the growth of host plants and the nutritive elements in plants. This study assessed potential regulatory effects of AM symbiosis with regard to nutrient uptake and transport, and revealed different response strategies to various Cd concentrations. Phragmites australis was inoculated with Rhizophagus irregularis in the greenhouse cultivation system, where it was treated with 0-20 mg L-1 of Cd for 21days to investigate growth parameters, as well as Cd and nutritive element distribution in response to AM fungus inoculation. Mycorrhizal plants showed a higher tolerance, particularly under high Cd-level stress in the substrate. Moreover, our results determined the roots as dominant Cd reservoirs in plants. The AM fungus improved Cd accumulation and saturated concentration in the roots, thus inhibiting Cd uptake to shoots. The observed distributions of nutritive elements and the interactions among these indicated the highest microelement contribution to roots, Ca contributed maximally in leaves, and K and P contributed similarly under Cd stress. In addition, AM fungus inoculation effectively impacted Mn and P uptake and accumulation while coping with Cd toxicity. This study also demonstrated translocation factor from metal concentration (TF) could be a good parameter to evaluate different transportation strategies induced by various Cd stresses in contrast to the bioconcentration factor (BCF) and translocation factor from metal accumulation (TF').


Asunto(s)
Cadmio/toxicidad , Glomeromycota , Simbiosis/efectos de los fármacos , Micorrizas , Raíces de Plantas , Poaceae
11.
J Sci Food Agric ; 97(9): 2919-2925, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27935053

RESUMEN

BACKGROUND: The importance of arbuscular mycorrhizal fungi (AMF) for nutrient uptake and growth in rice has been widely recognized. However, little is known about the distribution of carbon (C) and nitrogen (N) in rice under AMF inoculation, which can affect grain yield and quality. This study was conducted to investigate the distribution of C and N within rice plants under AMF inoculation and the effects on grain yield and quality. RESULTS: AMF inoculation significantly increased N accumulation and distribution in vegetative tissues at tillering, and N translocation into seeds from heading to maturity. Consequently, AMF inoculation more strongly impacted the distribution of N than that of C in seeds, with significantly reduced C:N ratios and increased protein content (by 7.4%). Additionally, AMF inoculation significantly increased grain yield by 28.2% through increasing the grain:straw ratio by 18.4%. In addition, the roots of inoculated rice exhibited greater change in C distribution, with significantly higher C concentrations, C accumulations, and C:N ratios at tillering and maturity. CONCLUSION: AMF inoculation affected the distribution of N in seeds and C in roots. As such, AMF inoculation may be a potential method for improving grain yield and quality. © 2016 Society of Chemical Industry.


Asunto(s)
Inoculantes Agrícolas/fisiología , Carbono/metabolismo , Hongos/fisiología , Micorrizas/fisiología , Nitrógeno/metabolismo , Oryza/química , Oryza/microbiología , Carbono/análisis , Nitrógeno/análisis , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Semillas/química , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Semillas/microbiología , Microbiología del Suelo
12.
J Environ Sci (China) ; 54: 152-159, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28391924

RESUMEN

Atrazine, a widely used herbicide, is increasing the agricultural production effectively, while also causing great environmental concern. Efficient atrazine-degrading bacterium is necessary to removal atrazine rapidly to keep a safe environment. In the present study, a new atrazine-degrading strain ZXY-1, identified as Pseudomonas, was isolated. This new isolated strain has a strong ability to biodegrade atrazine with a high efficiency of 9.09mg/L/hr. Temperature, pH, inoculum size and initial atrazine concentration were examined to further optimize the degradation of atrazine, and the synthetic effect of these factors were investigated by the response surface methodology. With a high quadratic polynomial mathematical model (R2=0.9821) being obtained, the highest biodegradation efficiency of 19.03mg/L/hr was reached compared to previous reports under the optimal conditions (30.71°C, pH7.14, 4.23% (V/V) inoculum size and 157.1mg/L initial atrazine concentration). Overall, this study provided an efficient bacterium and approach that could be potentially useful for the bioremediation of wastewater containing atrazine.


Asunto(s)
Atrazina/metabolismo , Herbicidas/metabolismo , Pseudomonas/metabolismo , Biodegradación Ambiental , Pseudomonas/aislamiento & purificación , Microbiología del Suelo , Contaminantes del Suelo/metabolismo
13.
Appl Microbiol Biotechnol ; 100(14): 6183-6192, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27255488

RESUMEN

Agrobacterium is a genus of gram-negative bacteria that can produce several typical exopolysaccharides with commercial uses in the food and pharmaceutical fields. In particular, succinoglycan and curdlan, due to their good quality in high yield, have been employed on an industrial scale comparatively early. Exopolysaccharide biosynthesis is a multiple-step process controlled by different functional genes, and various environmental factors cause changes in exopolysaccharide biosynthesis through regulatory mechanisms. In this mini-review, we focus on the genetic control and regulatory mechanisms of succinoglycan and curdlan produced by Agrobacterium. Some key functional genes and regulatory mechanisms for exopolysaccharide biosynthesis are described, possessing a high potential for application in metabolic engineering to modify exopolysaccharide production and physicochemical properties. This review may contribute to the understanding of exopolysaccharide biosynthesis and exopolysaccharide modification by metabolic engineering methods in Agrobacterium.


Asunto(s)
Agrobacterium/genética , Regulación Bacteriana de la Expresión Génica , Polisacáridos Bacterianos/biosíntesis , beta-Glucanos/metabolismo , Agrobacterium/metabolismo , Genes Bacterianos , Ingeniería Metabólica
14.
Water Environ Res ; 86(3): 258-68, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24734473

RESUMEN

Rhizospheric microorganisms are important for environmental conservancy. The constancy and variability of the microorganisms in the rhizosphere of Phragmites australis in relation to the spatiotemporal variations in wetland ecosystems were studied. During the peak and trough of the vegetative period of the Phragmites australis growing across the hydrologic gradients of the Sun Island Wetland, Biolog and denaturing gradient gel electrophoresis (DGGE) were used to investigate the rhizospheric microbial characteristics. Both methods demonstrated that the microbial activity, richness, and diversity decreased from summer to autumn. However, these properties did not show significant correlation with hydrologic gradient, except that the genetic richness and diversity of the fungi decreased with it. Cluster analysis also demonstrated that the rhizospheric microbial community seemed to be largely affected by a vegetative period. In addition, this research was extended to a broader range of determining the universal microorganisms, which showed notable adaptability.


Asunto(s)
Bacterias/clasificación , Hongos/clasificación , Raíces de Plantas/fisiología , Poaceae/fisiología , Microbiología del Suelo , Animales , Bacterias/genética , China , Hongos/genética , Filogenia , Poaceae/microbiología , Estaciones del Año , Suelo/química , Agua , Humedales
15.
Water Sci Technol ; 69(9): 1788-97, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24804651

RESUMEN

The process of simultaneous nitrification and denitrification (SND) of immobilized microorganisms in polyurethane form is discussed. The effect of different positions within the polyurethane carrier on microbial community response for the SND process is investigated by a combination of denaturing gradient gel electrophoresis profiles of the 16S rRNA gene V3 region and scanning electron microscopy. Results show that polyurethane, which consists of a unique porous structure, is an ideal platform for biofilm stratification of aerobe, anaerobe and facultative microorganisms in regard to the SND process. The community structure diversity response to different positions was distinct. The distributions of various functional microbes, detected from the surface aerobic stratification to the interior anaerobic stratification of polyurethane, were mainly nitrifying and denitrifying bacteria. Meanwhile aerobic denitrifying bacteria such as Paracoccus sp., Agrobacterium rubi and Ochrobactrum sp. were also adhered to the interior and surface of polyurethane. The SND process occurring on polyurethane foam was carried out by two independent processes: nitrogen removal and aerobic denitrification.


Asunto(s)
Bacterias/metabolismo , Poliuretanos/química , Bacterias/clasificación , Bacterias/genética , ADN Bacteriano/genética , Desnitrificación , Microscopía Electrónica de Rastreo , Nitrificación , Nitrógeno , Filogenia
16.
Sci Total Environ ; : 175499, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39151618

RESUMEN

Arbuscular mycorrhizal fungi (AMF) have been shown to effectively mitigate the detrimental effects of heavy metal stress on their plant hosts. Nevertheless, the biological activities of AMF were concurrently compromised. Biochar (BC), as an abiotic factor, had the potential compensate for this limitation. To elucidate the synergistic effects of biotic and abiotic factors, a pot experiment was conducted to assess the impact of biochar and AMF on the growth, physiological traits, and genetic expression in rice plants subjected to Cd stress. The results demonstrated that biochar significantly increased the mycorrhizal colonization rate by 22.19 %, while the combined application of biochar and AMF led to a remarkable enhancement of rice root biomass by 42.2 %. This resulted in a shift in spatial growth patterns that preferentially promoted enhanced underground development. Biochar effectively mitigated the stomatal limitations imposed by Cd on photosynthetic processes. The decrease in IBRv2 (Integrated Biomarker Response version 2) values suggested that the antioxidant system was experiencing a state of remission. An increase of Cd content within the rice root systems was observed, ranging from 33.71 % to 48.71 %, accompanied by a reduction in Cd bioavailability and mobility curtailed its translocation to the aboveground tissues. Under conditions of low soil Cd concentration (Cd ≤ 1 mg·kg-1), the Cd content in rice seeds from the group subjected to the combined treatment remained below the national standard (Cd ≤ 0.2 mg·kg-1). Furthermore, the combined treatment modulated the uptake of Fe and Zn by rice, while simultaneously suppressing the expression of genes associated with Cd transport. Collectively, the integration of biological and abiotic factors provided a novel perspective and methodological framework for safe in-situ utilization of soils with low Cd contamination.

17.
Bioresour Technol ; 393: 130081, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37993067

RESUMEN

The sulfur fluidizing bioreactor (S0FB) has significant superiorities in treating nitrate-rich wastewater. However, substantial self-acidification has been observed in engineering applications, resulting in frequent start-up failures. In this study, self-acidification was reproduced in a lab-scale S0FB. It was demonstrated that self-acidification was mainly induced by sulfur disproportionation process, accounting for 93.4 % of proton generation. Supplying sufficient alkalinity to both the influent (3000 mg/L) and the bulk (2000 mg/L) of S0FB was essential for achieving a successful start-up. Furthermore, the S0FB reached 10.3 kg-N/m3/d of nitrogen removal rate and 0.13 kg-PO43-/m3/d of phosphate removal rate, respectively, surpassing those of the documented sulfur packing bioreactors by 7-129 times and 26-65 times. This study offers a feasible and practical method to avoid self-acidification during restart of S0FB and highlights the considerable potential of S0FB in the treatment of nitrate-rich wastewater.


Asunto(s)
Nitratos , Aguas Residuales , Procesos Autotróficos , Desnitrificación , Azufre , Reactores Biológicos , Concentración de Iones de Hidrógeno , Nitrógeno
18.
Bioresour Technol ; 393: 130008, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37984668

RESUMEN

Precisely predicting the concentration of nitrogen-based pollutants from the wastewater treatment plants (WWTPs) remains a challenging yet crucial task for optimizing operational adjustments in WWTPs. In this study, an integrated approach using factor analysis (FA) and machine learning (ML) models was employed to accurately predict effluent total nitrogen (Ntoteff) and nitrate nitrogen (NO3-Neff) concentrations of the WWTP. The input values for the ML models were honed through FA to optimize factors, thereby significantly enhancing the ML prediction accuracy. The prediction model achieved a highest coefficient of determination (R2) of 97.43 % (Ntoteff) and 99.38 % (NO3-Neff), demonstrating satisfactory generalization ability for predictions up to three days ahead (R2 >80 %). Moreover, the interpretability analysis identified that the denitrification factor, the pollutant load factor, and the meteorological factor were significant. The model framework proposed in this study provides a valuable reference for optimizing the operation and management of wastewater treatment.


Asunto(s)
Aguas Residuales , Purificación del Agua , Nitratos/análisis , Nitrógeno/análisis , Análisis Factorial , Eliminación de Residuos Líquidos
19.
Environ Sci Ecotechnol ; 21: 100422, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38746775

RESUMEN

Remediating soil contaminated with polycyclic aromatic hydrocarbons (PAHs) presents a significant environmental challenge due to their toxic and carcinogenic properties. Traditional PAHs remediation methods-chemical, thermal, and bioremediation-along with conventional soil-washing agents like surfactants and cyclodextrins face challenges of cost, ecological harm, and inefficiency. Here we show an effective and environmentally friendly calixarene derivative for PAHs removal through soil washing. Thiacalix[4]arene tetrasulfonate (TCAS) has a unique molecular structure of a sulfonate group and a sulfur atom, which enhances its solubility and facilitates selective binding with PAHs. It forms host-guest complexes with PAHs through π-π stacking, OH-π interactions, hydrogen bonding, van der Waals forces, and electrostatic interactions. These interactions enable partial encapsulation of PAH molecules, aiding their desorption from the soil matrix. Our results show that a 0.7% solution of TCAS can extract approximately 50% of PAHs from contaminated soil while preserving soil nutrients and minimizing adverse environmental effects. This research unveils the pioneering application of TCAS in removing PAHs from contaminated soil, marking a transformative advancement in resource-efficient and sustainable soil remediation strategies.

20.
Ecotoxicology ; 22(4): 608-18, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23455898

RESUMEN

To evaluate the vegetative periodic effect of rhizosphere on the patterns of metal bioaccumulation, the concentrations of Mg, K, Ca, Mn, Zn, Fe, Cu, Cr, Ni, Cd and Pb in the corresponding rhizosphere soil and tissues of Phragmites australis growing in the Sun Island wetland (Harbin, China) were compared. The concentrations of Zn, Fe, Cu, Cr, Ni, Cd and Pb in roots were higher than in shoots, suggesting that roots are the primary accumulation organs for these metals and there exists an exclusion strategy for metal tolerance. In contrast, the rest of the metals showed an opposite trend, suggesting that they were not restricted in roots. Harvesting would particularly be an effective method to remove Mn from the environment. The concentrations of metals in shoots were generally higher in autumn than in summer, suggesting that Ph. australis possesses an efficient root-to-shoot translocation system, which is activated at the end of the growing season and allows more metals into the senescent tissues. Furthermore, metal bioaccumulation of Ph. australis was affected by vegetative periodic variation through the changing of physicochemical and microbial conditions. The rhizospheric microbial characteristics were significantly related to the concentrations of Mg, K, Zn, Fe and Cu, suggesting that microbial influence on metal accumulation is specific and selective, not eurytopic.


Asunto(s)
Metales/farmacocinética , Poaceae/química , Rizosfera , Humedales , Biodegradación Ambiental , China , Electroforesis en Gel de Gradiente Desnaturalizante , Islas , Raíces de Plantas/química , Estaciones del Año , Suelo/análisis , Suelo/química , Microbiología del Suelo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/farmacocinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA