Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(40): e2210203119, 2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-36161916

RESUMEN

Hard carbon is regarded as the most promising anode material for sodium-ion (Na-ion) batteries, owing to its advantages of high abundance, low cost, and low operating potential. However, the rate capability and cycle life span of hard carbon anodes are far from satisfactory, severely hindering its industrial applications. Here, we demonstrate that the desolvation process defines the Na-ion diffusion kinetics and the formation of a solid electrolyte interface (SEI). The 3A zeolite molecular sieve film on the hard carbon is proposed to develop a step-by-step desolvation pathway that effectively reduces the high activation energy of the direct desolvation process. Moreover, step-by-step desolvation yields a thin and inorganic-dominated SEI with a lower activation energy for Na+ transport. As a result, it contributes to greatly improved power density and cycling stability for both ester and ether electrolytes. When the above insights are applied, the hard carbon anode achieves the longest life span and minimum capacity fading rate at all evaluated current densities. Moreover, with the increase in current densities, an improved plateau capacity ratio is observed. This step-by-step desolvation strategy comprehensively enhances various properties of hard carbon anodes, which provides the possibility of building practical Na-ion batteries with high power density, high energy density, and durability.

2.
J Am Chem Soc ; 146(22): 15209-15218, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38775661

RESUMEN

Solid electrolyte interphases (SEIs) are sought to protect high-capacity anodes, which suffer from severe volume changes and fast degradations. The previously proposed effective SEIs were of high strength yet abhesive, inducing a yolk-shell structure to decouple the rigid SEI from the anode for accommodating the volume change. Ambivalently, the interfacial void-evolved electro-chemo-mechanical vulnerabilities become inherent defects. Here, we establish a new rationale for SEIs that resilience and adhesivity are both requirements and pioneer a design of a resilient yet adhesive SEI (re-ad-SEI), integrated into a conjugated surface bilayer structure. The re-ad-SEI and its protected particles exhibit excellent stability almost free from the thickening of SEI and the particle pulverization during cycling. More promisingly, the dynamically bonded intact SEI-anode interfaces enable a high-efficiency ion transport and provide a unique mechanical confinement effect for structural integrity of anodes. The high Coulombic efficiency (>99.8%), excellent cycling stability (500 cycles), and superior rate performance have been demonstrated in microsized Si-based anodes.

3.
Small ; 20(1): e2303832, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37670542

RESUMEN

Protonation has been considered essential for the pseudocapacitive energy storage of polyaniline (PANI) for years, as proton doping in PANI chains not only activates electron transport pathways, but also promotes the proceeding of redox reactions. Rarely has the ability for PANI of storing energy without protonation been investigated, and it remains uncertain whether PANI has pseudocapacitive charge storage properties in an alkaline electrolyte. Here, this work first demonstrates the pseudocapacitive energy storage for PANI without protonation using a PANI/graphene composite as a model material in an alkaline electrolyte. Using in situ Raman spectroscopy coupled with electrochemical quartz crystal microbalance (EQCM) measurements, this work determines the formation of -N= group over potential on a PANI chain and demonstrates the direct contribution of OH- in the nonprotonation type of oxidation reactions. This work finds that the PANI/graphene composite in an alkaline electrolyte has excellent cycling stability with a wider operation voltage of 1 V as well as a slightly higher specific capacitance than that in an acidic electrolyte. The findings provide a new perspective on pseudocapacitive energy storage of PANI-based composites, which will influence the selection of electrolytes for PANI materials and expand their application in energy storage fields.

4.
J Chem Phys ; 158(14): 141101, 2023 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-37061490

RESUMEN

Seawater batteries (SWBs) are a key part of the future underwater energy network for maritime safety and resource development due to their high safety, long lifespan, and eco-friendly nature. However, the complicated seawater composition and pollution, such as the S2-, usually poison the catalyst and lead to the degradation of the battery performance. Here, Zn single-atom catalysts (SACs) were demonstrated as effective oxygen reduction reaction catalysts with high anti-poisoning properties by density functional theory calculation and the Zn SACs anchoring on an N, P-doped carbon substrate (Zn-SAC@PNC) was synthesized by a one-pot strategy. Zinc active sites ensure the anti-poisoning property toward S2-, and N, P-doped carbon helps improve the activity. Therefore, Zn-SAC@PNC exhibits superior activity (E1/2: 0.87 V, Tafel slope: 69.5 mV dec-1) compared with Pt/C and shows a lower decay rate of the voltage after discharge in lean-oxygen natural seawater. In the presence of S2-, Zn-SAC@PNC can still maintain its original catalytic activity, which ensures the stable operation of SWBs in the marine environment with sulfur-based pollutants. This study provides a new strategy to design and develop efficient cathode materials for SWBs.

5.
Angew Chem Int Ed Engl ; 62(28): e202303557, 2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37191972

RESUMEN

In aqueous zinc (Zn) batteries, the Zn anode suffers from severe corrosion reactions and consequent dendrite growth troubles that cause fast performance decay. Herein, we uncover the corrosion mechanism and confirm that the dissolved oxygen (DO) other than the reputed proton is a principal origin of Zn corrosion and by-product precipitates, especially during the initial battery resting period. In a break from common physical deoxygenation methods, we propose a chemical self-deoxygenation strategy to tackle the DO-induced hazards. As a proof of concept, sodium anthraquinone-2-sulfonate (AQS) is introduced to aqueous electrolytes as a self-deoxidizing additive. As a result, the Zn anode sustains a long-term cycling of 2500 h at 0.5 mA cm-2 and over 1100 h at 5 mA cm-2 together with a high Coulombic efficiency up to 99.6 %. The full cells also show a high capacity retention of 92 % after 500 cycles. Our findings provide a renewed understanding of Zn corrosion in aqueous electrolytes and also a practical solution towards industrializing aqueous Zn batteries.

6.
Small ; 18(8): e2106427, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34889053

RESUMEN

Lithium (Li) metal batteries (LMBs) face huge challenges to achieve long cycling life at wide temperature range owing to the severe dendrite growth at subambient temperature and the intense side reactions with electrolyte at high temperature. Herein, an ultrathin LiBO2 layer with an extremely high Young's modulus of 8.0 GPa is constructed on Li anode via an in situ reaction between Li metal and 4,4,5,5-tetramethyl-1,3,2-dioxa-borolane (TDB) to form LiBO2 @Li anode, which presents two times higher exchange current density than pristine Li anode. The LiBO2 layer presents a strong absorption to Li ions and greatly improves the interfacial dynamics of Li-ion migration, which induces homogenous lithium nucleation and deposition to form a dense lithium layer. Consequently, the Li dendrite growth during cycling at subambient temperature and the side reactions with electrolyte at high temperature are simultaneously suppressed. The LiBO2 @Li/LiNi0.8 Co0.1 Mn0.1 O2 (NCM811) full batteries with limited Li capacity and high cathode mass loading of 9.9 mg cm-2 can steadily cycle for 300 cycles with a capacity retention of 86.6%. The LiBO2 @Li/NCM811 full batteries and LiBO2 @Li/LiBO2 @Li symmetric batteries also present excellent cycling performance at both -20 and 60 °C. This work develops a strategy to achieve outstanding performance of LMBs at wide working temperature-range.

7.
Chem Rec ; 22(10): e202200124, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35675916

RESUMEN

Lithium-sulfur battery is a promising candidate for next-generation high energy density batteries due to its ultrahigh theoretical energy density. However, it suffers from low sulfur utilization, fast capacity decay, and the notorious "shuttle effect" of lithium polysulfides (LiPSs) due to the sluggish reaction kinetics, which severely restrict its practical applications. Using the electrocatalyst can accelerate the redox reactions between sulfur, LiPSs and Li2 S and suppress the shuttling of LiPSs, and thus, it is a promising strategy to solve the above problems, enabling the battery with high energy density and long cycling stability. In this personal account, we discuss the catalyst design for lithium-sulfur batteries according to the sulfur reduction reaction (SRR) and sulfur evolution reaction (SER) in the discharging and charging processes. The catalytic effects for each step in SRR and SER are highlighted and the homogenous catalysts, the selective catalysts, and the bidirectional catalysts are discussed, which can help guide the rational design of the catalysts and practical applications of lithium-sulfur batteries.

8.
Angew Chem Int Ed Engl ; 61(20): e202200410, 2022 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-35226757

RESUMEN

Low-cost and scalable sodium ion (Na-ion) batteries serve as an ideal alternative to the current lithium-ion batteries. To compensate for the shortage of energy density, the most accessible solution is developing a high-voltage anode-free configuration comprising a lightweight Al current collector on the anode and a high-voltage sodiumized cathode. However, it imposes stringent Na reversibility and high-voltage stability requirements on the electrolyte. A 3A zeolite molecular sieve film is rationally designed, and a highly aggregated solvation structure is constructed through the size effect. It suppresses the trace but continuous oxidative decomposition and extends the oxidative stability to 4.5 V without sacrificing the Na reversibility of the anode (99.91 %). Thus, we can make anode-free cells with high energy density of 369 and 372 W h kg-1 for 4.0 and 4.25 V class cells, respectively. Furthermore, this strategy enables a long lifespan (250 cycles) for 4.0 V-class anode-free cells.

9.
Angew Chem Int Ed Engl ; 61(30): e202206340, 2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-35607934

RESUMEN

The sodium (Na)-metal batteries hold great promise as a sustainable technology owing to the high element abundance and low cost. However, the generally used carbonate electrolytes remain highly reactive towards Na metal, leading to flammable gas evolution. Here, we propose an electrolyte sieving strategy to separate anion-mediated ion-pairs from dilute electrolytes by introducing a 3A zeolite molecular sieve film. The anion-mediated ion-pair firstly weakens the electron-withdrawing property of the cation, which effectively suppresses the gassing. In addition, the sieved electrolyte promotes the formation of robust inorganic-dominated solid electrolyte interphases. Therefore, it contributes to stable Na plating/stripping in Na|Al half cells with Coulombic efficiency maintaining at 98.5 % and a long service life of 800 cycles in full cells. Moreover, the electrode stability is well preserved even under harsh conditions of high temperature and ester-based electrolytes with higher reactivity.

10.
Small ; 17(48): e2007548, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33682998

RESUMEN

Volumetric performance is of great importance in today's energy storage devices, and is used to evaluate their competitiveness in the markets of miniaturized electronic devices and space-constrained electric vehicles. Supercapacitors suffer from a low volumetric energy density in spite of their high power and long cycle life because of their use of porous but low-density carbons. This review considers compact carbon design strategies for high volumetric performance supercapacitors based on four key electrode parameters: density, thickness, gravimetric capacitance, and nonactive components. A guide is provided for constructing a conductive additive-/binder-free self-supported ultrathick, dense electrode to maximize the volumetric energy density. The research status of emerging micro-supercapacitors and hybrid supercapacitors is then briefly discussed, emphasizing the importance of their volumetric performance and the opportunities as well as challenges they face in the trendy Internet of things applications or larger device systems.

11.
Small ; 17(3): e2005564, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33350120

RESUMEN

The precise control of the ice crystal growth during a freezing process is of essential importance for achieving porous cryogels with desired architectures. The present work reports a systematic study on the achievement of multi-structural cryogels from a binary dispersion containing 50 wt% 2,2,6,6-tetramethylpiperidin-1-oxyl, radical-mediated oxidized cellulose nanofibers (TOCNs), and 50 wt% graphene oxide (GO) via the unidirectional freeze-drying (UDF) approach. It is found that the increase in the sol's pH imparts better dispersion of the two components through increased electrostatic repulsion, while also causing progressively weaker gel networks leading to micro-lamella cryogels from the UDF process. At the pH of 5.2, an optimum between TOCN and GO self-aggregation and dispersion is achieved, leading to the strongest TOCN-GO interactions and their templating into the regular micro-honeycomb structures. A two-faceted mechanism for explaining the cryogel formation is proposed and it is shown that the interplay of the maximized TOCN-GO interactions and the high affinity of the dispersoid complexes for the ice crystals are necessary for obtaining a micro-honeycomb morphology along the freezing direction. Further, by linking the microstructure and rheology of the corresponding precursor sols, a diagram for predicting the microstructure of TOCN-GO cryogels obtained through the UDF process is proposed.

12.
Small ; 17(31): e2101538, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34160905

RESUMEN

Catalysis is an effective remedy for the fast capacity decay of lithium-sulfur batteries induced by the shuttling of lithium polysulfides (LiPSs), but too strong adsorption ability of many catalysts toward LiPSs increases the risk of catalyst passivation and restricts the diffusion of LiPSs for conversion. Herein, perovskite bimetallic hydroxide (CoSn(OH)6 ) nanocages are prepared, which are further wrapped by reduced graphene oxide (rGO) as the catalytic host for sulfur. Because of the coordinated valence state of Co and Sn and the intrinsic defect of the perovskite structure, such bimetallic hydroxide delivers moderate adsorption ability and enhanced catalytic activity toward LiPS conversion. Coupled with the hollow structure and the wrapped rGO as double physical barriers, the redox reaction kinetics, and sulfur utilization are effectively improved with such a host. The assembled battery delivers a good rate performance with a high capacity of 644 mAh g-1 at 2 C and long stability with a capacity decay of 0.068% per cycle over 600 cycles at 1 C. Even with a higher sulfur loading of 3.2 mg cm-2 and a low electrolyte/sulfur ratio of 5 µL mg-1 , the battery still shows high sulfur utilization and good cycling stability.

13.
Phys Chem Chem Phys ; 23(38): 21385-21398, 2021 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-34549210

RESUMEN

Lithium-sulfur batteries (LSBs) have received intensive attention in recent years due to their high theoretical energy density derived from the lithiation of sulfur. In the discharge process, sulfur transforms into lithium polysulfides (LiPSs) that dissolve in liquid electrolytes and then into insoluble Li2S precipitated on the electrode surface. The electronically and ionically insulating Li2S leads to two critical issues, including the sluggish reaction kinetics from LiPSs to Li2S and the passivation of the electrode. In this regard, controlling the Li2S deposition is significant for improving the performance of LSBs. In this perspective, we have summarized the recent achievements in regulating the Li2S deposition to enhance the performance of LSBs, including the solution-mediated growth of Li2S, sulfur host enhanced nucleation and catalysis induced kinetic improvement. Moreover, the challenges and possibilities for future research studies are discussed, highlighting the significance of regulating the Li2S deposition to realize the high electrochemical performance and promote the practical uses of LSBs.

14.
Small ; 16(15): e1902603, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31389177

RESUMEN

Sodium-ion batteries (SIBs) are promising for large-scale energy storage systems and carbon materials are the most likely candidates for their electrodes. The existence of defects in carbon materials is crucial for increasing the sodium storage ability. However, both the reversible capacity and efficiency need to be further improved. Functionalization is a direct and feasible approach to address this issue. Based on the structural changes in carbon materials produced by surface functionalization, three basic categories are defined: heteroatom doping, grafting of functional groups, and the shielding of defects. Heteroatom doping can improve the electrochemical reactivity, and the grafting of functional groups can promote both the diffusion-controlled bulk process and surface-confined capacitive process. The shielding of defects can further increase the efficiency and cyclic stability without sacrificing reversible capacity. In this Review, recent progresses in the ways to produce surface functionalization are presented and the related impact on the physical and chemical properties of carbon materials is discussed. Moreover, the critical issues, challenges, and possibilities for future research are summarized.

15.
Small ; 16(29): e2001736, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32567230

RESUMEN

Rechargeable aqueous zinc (Zn) ion-based energy storage systems have been reviving recently because of their low cost and high safety merits; however, they still suffer from the problems of corrosion and dendrite growth on Zn metal anodes that cause gas generation and early battery failure. Unfortunately, the corrosion problem has not received sufficient attention until now. Here, it is pioneeringly demonstrated that decorating the Zn surface with a dual-functional metallic indium (In) layer, acting as both a corrosion inhibitor and a nucleating agent, is a facile but effective strategy to suppress both drastic corrosion and dendrite growth. Symmetric cells assembled with the treated Zn electrodes can sustain up to 1500 h of plating/stripping cycles with an ultralow voltage hysteresis (54 mV), and a 5000 cycle-life is achieved for a prototype full cell. This work will instigate the further development of aqueous metal-based energy storage systems.

16.
Small ; 15(48): e1900721, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30997753

RESUMEN

In order to fabricate high performance fiber pseudocapacitors, the trade-off between high mass loading and high utilization efficiency of pseudocapacitive materials should be carefully addressed. Here, a solution that is to construct a carbon-based versatile scaffold is reported for loading pseudocapacitive materials on carbonaceous fibers. The scaffold can be easily built by conformally coating commercial pen ink on the fibers without any destruction to the fiber skeleton. Due to the high electrical conductivity and abundant macropore structure, it can provide sufficient loading room and a high ion/electron conductive network for pseudocapacitive materials. Therefore, their loading mass and utilization efficiency can be increased simultaneously, and thus the as-designed fibrous electrode displays a high areal capacitance of 649 mF cm-2 (or 122 mF cm-1 based on length), which is higher than most of the reported fiber pseudocapacitors. The simple and low-cost strategy opens up a new way to prepare high performance portable/wearable energy storage devices.

17.
Small ; 15(14): e1805363, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30821935

RESUMEN

Aerogels are one of the most popular composite reinforcement materials because of their high porosity and their continuous and homogeneous network. Most aerogels are isotropic, thus leading to isotropic composites when they are used as fillers. This fundamentally limits their applications in areas where anisotropy is needed. Here, an anisotropic microhoneycomb cellulose nanofiber- (CellF)-carbon nanotube (CNT) aerogel (denoted MCCA) is reported that contains unidirectionally aligned penetrating microchannels, which is prepared by a unidirectional freeze-drying method, using the structure-directing function of the CellFs. Due to its anisotropic nature, MCCA-reinforced polydimethylsilexane (denoted MCCA/PDMS) shows distinct anisotropic behavior, with the electrical conductivity and Young's modulus along the direction of penetrating microchannels being approximately twice those in the orthogonal direction. MCCA/PDMS is used to make "directional" strain sensors with electrical resistance as the output signal. They demonstrate a 92% sensitivity difference between the microchannel direction and its orthogonal direction. This approach can be used to prepare anisotropic MCCA-based composites with other polymers for different applications.

18.
Nano Lett ; 17(9): 5862-5868, 2017 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-28796524

RESUMEN

Na-based batteries are proposed as promising energy storage candidates for beyond Li-ion technology due to the higher natural earth of Na metal. For its high capacity and low potential, Na metal may carve itself a niche when directly used as anodes. Similar to or even more problematic than Li, however, uneven plating/stripping of Na leads to dendrite formation. As the plating substrates, current collectors have a paramount influence on the Na plating/stripping behaviors. Here we propose porous Al current collectors as the plating substrate to suppress Na dendrites. Al does not alloy with Na. It is advantageous over Cu current collectors in terms of cost and weight. The interconnected porous structure can increase available surface for Na to nucleate and decrease the Na+ flux distribution, leading to homogeneous plating. The Na metal anodes can run for over 1000 cycles on porous Al with a low and stable voltage hysteresis and their average plating/stripping Coulombic efficiency was above 99.9%, which is greatly improved compared to planar Al. We used the porous Al for Na-O2, Na-Na3V2(PO4)3 cells with low Na amount and anode free Na-TiS2 batteries and anticipate that using this strategy can be combined with further electrolyte and cathodes to develop high performance Na-based batteries.

19.
Small ; 13(9)2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27936314

RESUMEN

Introducing heterojunction is an effective way for improving the intrinsic photocatalytic activity of a graphitic carbon nitride (GCN) semiconductor. These heterostructures are mostly introduced by interfacing GCN with foreign materials that normally have entirely different physicochemical properties and show unfavorable compatibility, thus resulting in a limited improvement of the photocatalytic performance of the resultant materials. Herein, a composite polymeric carbon nitride (CPCN) that contains both melon-based GCN and triazine-based crystalline carbon nitride (CCN) is prepared by a simple thermal reaction between lithium chloride and GCN. Thanks to the intimate contact and good compatibility between GCN and CCN, an in situ formed heterojunction acts as a driving force for separating the photogenerated charge carriers in CPCN. As a result, CPCN exhibits a significantly improved photocatalytic performance under visible light irradiation, which is, respectively, 10.6 and 5.3 times as high as those of the GCN and CCN alone. This well designed isotype heterojunction by a coupling of CCN presents an effective avenue for developing efficient GCN photocatalysts.

20.
Small ; 13(27)2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28544446

RESUMEN

The sulfur content in carbon-sulfur hybrid using the melt-diffusion method is normally lower than 70 wt%, which greatly decreases the energy density of the cathode in lithium-sulfur (Li-S) batteries. Here, a scalable method inspired by the commercialized production of Na2 S is used to prepare a hierarchical porous carbon-sulfur hybrid (denoted HPC-S) with high sulfur content (≈85 wt%). The HPC-S is characterized by the structure of sulfur nanodots naturally embedded in a 3D carbon network. The strategy uses Na2 SO4 as the starting material, which serves not only as the sulfur precursor but also as a salt template for the formation of the 3D carbon network. The HPC-S cathode with such a high sulfur content shows excellent rate performance and cycling stability in Li-S batteries because of the sulfur nanoparticles, the unique carbon framework, and the strong interaction between them. The production method can also be readily scaled up and used in practical Li-S battery applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA