Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 226
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(39): e2202563119, 2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36122234

RESUMEN

Hundreds of members have been synthesized and versatile applications have been promised for endofullerenes (EFs) in the past 30 y. However, the formation mechanism of EFs is still a long-standing puzzle to chemists, especially the mechanism of embedding clusters into charged carbon cages. Here, based on synthesis and structures of two representative vanadium-scandium-carbido/carbide EFs, VSc2C@Ih (7)-C80 and VSc2C2@Ih (7)-C80, a reasonable mechanism-C1 implantation (a carbon atom is implanted into carbon cage)-is proposed to interpret the evolution from VSc2C carbido to VSc2C2 carbide cluster. Supported by theoretical calculations together with crystallographic characterization, the single electron on vanadium (V) in VSc2C@Ih (7)-C80 is proved to facilitate the C1 implantation. While the V=C double bond is identified for VSc2C@Ih (7)-C80, after C1 implantation the distance between V and C atoms in VSc2C2@Ih (7)-C80 falls into the range of single bond lengths as previously shown in typical V-based organometallic complexes. This work exemplifies in situ self-driven implantation of an outer carbon atom into a charged carbon cage, which is different from previous heterogeneous implantation of nonmetal atoms (Group-V or -VIII atoms) driven by high-energy ion bombardment or high-pressure offline, and the proposed C1 implantation mechanism represents a heretofore unknown metal-carbon cluster encapsulation mechanism and can be the fundamental basis for EF family genesis.

2.
J Am Soc Nephrol ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38857203

RESUMEN

BACKGROUND: Chemical modifications on RNA profoundly impact RNA function and regulation. m6A, the most abundant RNA modification in eukaryotes, plays a pivotal role in diverse cellular processes and disease mechanisms. However, its importance is understudied in human chronic kidney disease (CKD) samples regarding its influence on pathological mechanisms. METHODS: LC-MS/MS and Methylated RNA Immunoprecipitation (MeRIP) sequencing were utilized to examine alterations in m6A levels and patterns in CKD samples. Overexpression of the m6A writer METTL3 in cultured kidney tubular cells was performed to confirm the impact of m6A in tubular cells and explore the biological functions of m6A modification on target genes. Additionally, tubule-specific deletion of Mettl3 (Ksp-Cre Mettl3f/f) mice and the use of anti-sense oligonucleotides inhibiting Mettl3 expression were utilized to reduce m6A modification in an animal kidney disease model. RESULTS: By examining 127 human CKD samples, we observed a significant increase in m6A modification and METTL3 expression in diseased kidneys. Epitranscriptomic analysis unveiled an enrichment of m6A modifications in transcripts associated with the activation of inflammatory signaling pathways, particularly the cGAS-STING pathway. m6A hypermethylation increased mRNA stability in cGAS and STING1, as well as elevated the expression of key proteins within the cGAS-STING pathway. Both the tubule-specific deletion of Mettl3 and the use of anti-sense oligonucleotides to inhibit Mettl3 expression protected mice from inflammation, reduced cytokine expression, decreased immune cell recruitment, and attenuated kidney fibrosis. CONCLUSIONS: Our research revealed heightened METTL3-mediated m6A modification in fibrotic kidneys, particularly enriching the cGAS-STING pathway. This hypermethylation increased mRNA stability for cGAS and STING1, leading to sterile inflammation and fibrosis.

3.
Chem Soc Rev ; 53(6): 2863-2897, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38324027

RESUMEN

Magnetic lanthanide (Ln) metal complexes exhibiting magnetic bistability can behave as molecular nanomagnets, also known as single-molecule magnets (SMMs), suitable for storing magnetic information at the molecular level, thus attracting extensive interest in the quest for high-density information storage and quantum information technologies. Upon encapsulating Ln ion(s) into fullerene cages, endohedral metallofullerenes (EMFs) have been proven as a promising and versatile platform to realize chemically robust SMMs, in which the magnetic properties are able to be readily tailored by altering the configurations of the encapsulated species and the host cages. In this review, we present critical discussions on the molecular structures and magnetic characterizations of EMF-SMMs, with the focus on their peculiar molecular and electronic structures and on the intriguing molecular magnetism arising from such structural uniqueness. In this context, different families of magnetic EMFs are summarized, including mononuclear EMF-SMMs wherein single-ion anisotropy is decisive, dinuclear clusterfullerenes whose magnetism is governed by intramolecular magnetic interaction, and radical-bridged dimetallic EMFs with high-spin ground states that arise from the strong ferromagnetic coupling. We then discuss how molecular assemblies of SMMs can be constructed, in a way that the original SMM behavior is either retained or altered in a controlled manner, thanks to the chemical robustness of EMFs. Finally, on the basis of understanding the structure-magnetic property correlation, we propose design strategies for high-performance EMF-SMMs by engineering ligand fields, electronic structures, magnetic interactions, and molecular vibrations that can couple to the spin states.

4.
J Am Chem Soc ; 146(25): 17003-17008, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38865191

RESUMEN

We report here a new type of metal fluoride cluster that can be stabilized inside fullerene via in situ fluorine encapsulation followed by exohedral trifluoromethylation, giving rise to rare-earth metal fluoride clusterfullerenes (FCFs) M2F@C80(CF3) (M = Gd and Y). The molecular structure of Gd2F@C80(CF3) was unambiguously determined by single-crystal X-ray analysis to show a µ2-fluoride-bridged Gd-F-Gd cluster with short Gd-F bonds of 2.132(7) and 2.179(7) Å. The 19F NMR spectrum of the diamagnetic Y2F@C80(CF3) confirms the existence of the endohedral F atom, which exhibits a triplet with a large 19F-89Y coupling constant of 74 Hz and a high temperature sensitivity of the 19F chemical shift of 0.057 ppm/K. Theoretical studies reveal the ionic Y-F bonding nature arising from the highest electronegativity of the F element and an electronic configuration of [Y2F]5+@[C80]5- with an open-shell carbon cage, which thus necessitates the stabilization of FCFs by exohedral trifluoromethylation.

5.
J Am Chem Soc ; 146(26): 17600-17605, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38869355

RESUMEN

Coupling two magnetic anisotropic lanthanide ions via a direct covalent bond is an effective way to realize high magnetization blocking temperature of single-molecule magnets (SMMs) by suppressing quantum tunneling of magnetization (QTM), whereas so far only single-electron lanthanide-lanthanide bonds with relatively large bond distances are stabilized in which coupling between lanthanide and the single electron dominates over weak direct 4f-4f coupling. Herein, we report for the first time synthesis of short Dy(II)-Dy(II) single bond (3.61 Å) confined inside a carbon cage in the form of an endohedral metallofullerene Dy2@C82. Such a direct Dy(II)-Dy(II) covalent bond renders a strong Dy-Dy antiferromagnetic coupling that effectively quenches QTM at zero magnetic field, thus opening up magnetic hysteresis up to 25 K using a field sweep rate of 25 Oe/s, concomitant with a high 100 s magnetization blocking temperature (TB,100s) of 27.2 K.

6.
Angew Chem Int Ed Engl ; : e202407551, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38881501

RESUMEN

Phosphorene and fullerene are representative two-dimensional (2D) and zero-dimensional (0D) nanomaterials respectively, constructing their heterodimensional hybrid not only complements their physiochemical properties but also extends their applications via synergistic interactions. This is however challenging because of their diversities in dimension and chemical reactivity, and theoretical studies predicted that it is improbable to directly bond C60 onto the surface of phosphorene due to their strong repulsion. Here, we develop a facile electrosynthesis method to synthesize the first phosphorene-fullerene hybrid featuring fullerene surface bonding via P-C bonds. Few-layer black phosphorus nanosheets (BPNSs) obtained from electrochemical exfoliation react with C602- dianion prepared by electroreduction of C60, fulfilling formation of the "improbable" phosphorene-fullerene hybrid (BPNS-s-C60). Theoretical results reveal that the energy barrier for formation of [BPNS-s-C60]2- intermediate is significantly decreased by 1.88 eV, followed by an oxidization reaction to generate neutral BPNS-s-C60 hybrid. Surface bonding of C60 molecules not only improves significantly the ambient stability of BPNSs, but also boosts dramatically the visible light and near-infrared (NIR) photocatalytic hydrogen evolution rates, reaching 1466 and 1039 µmol h-1 g-1 respectively, which are both the highest values among all reported BP-based metal-free photocatalysts.

7.
J Am Chem Soc ; 145(41): 22599-22608, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37787921

RESUMEN

Metal complexes bearing single-electron metal-metal bonds (SEMBs) exhibit unusual electronic structures evoking strong magnetic coupling, and such bonds can be stabilized in the form of dimetallofullerenes (di-EMFs) in which two metals are confined in a carbon cage. Up to now, only a few di-EMFs containing SEMBs are reported, which are all based on a high-symmetry icosahedral (Ih) C80 cage embedding homonuclear rare-earth bimetals, and a chemical modification of the Ih-C80 cage is required to stabilize the SEMB. Herein, by introducing 3d-block transition metal titanium (Ti) along with 4f-block lanthanum (La) into the carbon cage, we synthesized the first crystallographically characterized SEMB-containing 3d-4f heteronuclear di-EMFs based on pristine fullerene cages. Four novel La-Ti heteronuclear di-EMFs were isolated, namely, LaTi@D3h(5)-C78, LaTi@Ih(7)-C80, LaTi@D5h(6)-C80, and LaTi@C2v(9)-C82, and their molecular structures were unambiguously determined by single-crystal X-ray diffraction. Upon increasing the cage size from C78 to C82, the La-Ti distance decreases from 4.31 to 3.97 Å, affording fine-tuning of the metal-metal bonding and hyperfine coupling, as evidenced by an electron spin resonance (ESR) spectroscopic study. Density functional theory (DFT) calculations confirm the existence of SEMB in all four LaTi@C2n di-EMFs, and the accumulation of electron density between La and Ti atoms shifts gradually from the proximity of the Ti atom inside C78 to the center of the LaTi bimetal inside C82 due to the decrease of the La-Ti distance. The electronic properties of LaTi@C2n heteronuclear dimetallofullerenes differ apparently from their homonuclear La2@C2n counterparts, revealing the peculiarity of heteronuclear dimetallofullerenes with the involvement of 3d-block transition metal Ti.

8.
J Am Chem Soc ; 145(46): 25440-25449, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37955678

RESUMEN

Despite decades of efforts, the actinide-carbon triple bond has remained an elusive target, defying synthesis in any isolable compound. Herein, we report the successful synthesis of uranium-carbon triple bonds in carbide-bridged bimetallic [U≡C-Ce] units encapsulated inside the fullerene cages of C72 and C78. The molecular structures of UCCe@C2n and the nature of the U≡C triple bond were characterized through X-ray crystallography and various spectroscopic analyses, revealing very short uranium-carbon bonds of 1.921(6) and 1.930(6) Å, with the metals existing in their highest oxidation states of +6 and +4 for uranium and cerium, respectively. Quantum-chemical studies further demonstrate that the C2n cages are crucial for stabilizing the [UVI≡C-CeIV] units through covalent and coordinative interactions. This work offers a new fundamental understanding of the elusive uranium-carbon triple bond and informs the design of complexes with similar bonding motifs, opening up new possibilities for creating distinctive molecular compounds and materials.

9.
J Am Chem Soc ; 145(30): 16778-16786, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37406618

RESUMEN

Endohedral metallofullerenes (EMFs) are sub-nano carbon materials with diverse applications, yet their formation mechanism, particularly for metastable isomers, remains ambiguous. The current theoretical methods focus mainly on the most stable isomers, leading to limited predictability of metastable ones due to their low stabilities and yields. Herein, we report the successful isolation and characterization of two metastable EMFs, Sc2C2@C1(39656)-C82 and Sc2C2@C1(51383)-C84, which violate the isolated pentagon rule (IPR). These two non-IPR EMFs exhibit a rare case of planar and pennant-like Sc2C2 clusters, which can be considered hybrids of the common butterfly-shaped and linear configurations. More importantly, the theoretical results reveal that despite being metastable, these two non-IPR EMFs survived as the products from their most stable precursors, Sc2C2@C2v(5)-C80 and Sc2C2@Cs(6)-C82, via a C2 insertion during the post-formation annealing stages. We propose a systematic theoretical method for predicting metastable EMFs during the post-formation stages. The unambiguous molecular-level structural evidence, combined with the theoretical calculation results, provides valuable insights into the formation mechanisms of EMFs, shedding light on the potential of post-formation mechanisms as a promising approach for EMF synthesis.

10.
Small ; : e2309827, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38084461

RESUMEN

Solution-processed photodetectors have emerged as promising candidates for next-generation of visible-near infrared (vis-NIR) photodetectors. This is attributed to their ease of processing, compatibility with flexible substrates, and the ability to tune their detection properties by integrating complementary photoresponsive semiconductors. However, the limited performance continues to hinder their further development, primarily influenced by the difference of charge transport properties between perovskite and organic semiconductors. In this work, a perovskite-organic bipolar photodetectors (PDs) is introduced with multispectral responsivity, achieved by effectively managing charges in perovskite and a ternary organic heterojunction. The ternary heterojunction, incorporating a designed NIR guest acceptor, exhibits a faster charge transfer rate and longer carrier diffusion length than the binary heterojunction. By achieving a more balanced carrier dynamic between the perovskite and organic components, the PD achieves a low dark current of 3.74 nA cm-2 at -0.2 V, a fast response speed of <10 µs, and a detectivity of exceeding 1012 Jones. Furthermore, a bioinspired retinotopic system for spontaneous chromatic adaptation is achieved without any optical filter. This charge management strategy opens up possibilities for surpassing the limitations of photodetection and enables the realization of high-purity, compact image sensors with exceptional spatial resolution and accurate color reproduction.

11.
Chemphyschem ; 24(20): e202300400, 2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37488069

RESUMEN

The interfacial electronic structure of perovskite layers and transport layers is critical for the performance and stability of perovskite solar cells (PSCs). The device performance of PSCs can generally be improved by adding a slight excess of lead iodide (PbI2 ) to the precursor solution. However, its underlying working mechanism is controversial. Here, we performed a comprehensive study of the electronic structures at the interface between CH3 NH3 PbI3 and C60 with and without the modification of PbI2 using in situ photoemission spectroscopy measurements. The correlation between the interfacial structures and the device performance was explored based on performance and stability tests. We found that there is an interfacial dipole reversal, and the downward band bending is larger at the CH3 NH3 PbI3 /C60 interface with the modification of PbI2 as compared to that without PbI2 . Therefore, PSCs with PbI2 modification exhibit faster charge carrier transport and slower carrier recombination. Nevertheless, the modification of PbI2 undermines the device stability due to aggravated iodide migration. Our findings provide a fundamental understanding of the CH3 NH3 PbI3 /C60 interfacial structure from the perspective of the atomic layer and insight into the double-edged sword effect of PbI2 as an additive.

12.
Inorg Chem ; 62(32): 12976-12988, 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37527419

RESUMEN

Actinide endohedral metallofullerenes (EMFs) are a fullerene family that possess unique actinide-carbon cage host-guest molecular and electronic structures. In this work, a novel actinide EMF, U@Cs(4)-C82, was successfully synthesized and characterized, and its chemical reactivity was investigated. Crystallographic analysis shows that U@Cs(4)-C82, a new isomer of U@C82, has a Cs(4)-C82 cage, which has never been discovered in the form of empty or endohedral fullerenes. Its unique chemical reactivities were further revealed through the Bingel-Hirsch reaction and carbene addition reaction studies. The Bingel-Hirsch reaction of U@Cs(4)-C82 shows exceptionally high selectivity and product yield, yielding only one major addition adduct. Moreover, the addition sites for both reactions are unexpectedly located on adjacent carbon atoms far away from the actinide metal, despite the nucleophilic (Bingel-Hirsch) and electrophilic (carbene addition) nature of either reactant. Density functional theory (DFT) calculations suggest that this chemical behavior, unprecedented for EMFs, is directed by the unusually strong interaction between U and the sumanene motif of the carbon cage in U@Cs(4)-C82, which makes the energy increase when it is disrupted. This work reveals remarkable chemical properties of actinide EMFs originating from their unique electronic structures and highlights the key role of actinide-cage interactions in the determination of their chemical behaviors.

13.
Ecotoxicol Environ Saf ; 259: 115045, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37235896

RESUMEN

Although studies have estimated the associations of PM2.5 with total mortality or cardiopulmonary mortality, few have comprehensively examined cause-specific mortality risk and burden caused by ambient PM2.5. Thus, this study investigated the association of short-term exposure to PM2.5 with cause-specific mortality using a death-spectrum wide association study (DWAS). Individual information of 5,450,764 deaths during 2013-2018 were collected from six provinces in China. Daily PM2.5 concentration in the case and control days were estimated by a random forest model. A time-stratified case-crossover study design was applied to estimate the associations (access risk, ER) of PM2.5 with cause-specific mortality, which was then used to calculate the population-attributable fraction (PAF) of mortality and the corresponding mortality burden caused by PM2.5. Each 10 µg/m3 increase in PM2.5 concentration (lag03) was associated with a 0.80 % [95 % confidence interval (CI): 0.73 %, 0.86 %] rise in total mortality. We found greater mortality effect at PM2.5 concentrations < 50 µg/m3. Stratified analyses showed greater ERs in females (1.01 %, 95 %CI: 0.91 %, 1.11 %), children ≤ 5 years (2.17 %, 95 %CI: 0.85 %, 3.51 %), and old people ≥ 70 years. We identified 33 specific causes (level 2) of death which had significant associations with PM2.5, including 16 circulatory diseases, 9 respiratory diseases, and 8 other causes. The PAF estimated based on the overall association between PM2.5 and total mortality was 3.16 % (95 %CI: 2.89 %, 3.40 %). However, the PAF was reduced to 2.88 % (95 %CI: 1.88 %, 3.81 %) using the associations of PM2.5 with 33 level 2 causes of death, based on which 250.15 (95 %CI: 163.29, 330.93) thousand deaths were attributable to short-term PM2.5 exposure across China in 2019. Overall, this study provided a comprehensive picture on the death-spectrum wide association between PM2.5 and morality in China. We observed robust positive cause-specific associations of PM2.5 with mortality risk, which may provide more precise basis in assessing the mortality burden of air pollution.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Niño , Femenino , Humanos , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Material Particulado/efectos adversos , Material Particulado/análisis , Causas de Muerte , Estudios Cruzados , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , China/epidemiología
14.
Acta Cardiol Sin ; 39(5): 709-719, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37720403

RESUMEN

Background: Angiotensin-converting enzyme inhibitors (ACEis) and angiotensin receptor blockers (ARBs) are commonly used for hypertension and cardiovascular diseases. However, whether their use increases the risk of acute kidney injury (AKI) and should be discontinued during acute illness remains controversial. Methods: This retrospective study enrolled 952 dialysis-free patients who were admitted to intensive care units (ICUs) between 2015 and 2017, including 476 premorbid long-term (> 1 month) ACEi/ARB users. Propensity score matching was performed to adjust for age, gender, comorbidities, and disease severity. The primary endpoint was the occurrence of AKI during hospitalization, and the secondary endpoint was mortality or dialysis within 1 year. Results: Compared with non-users, the ACEi/ARB users were not associated with an increased AKI risk during hospitalization [66.8% vs. 70.4%; hazard ratio (HR): 1.13, 95% confidence interval (CI): 0.97-1.32, p = 0.126]. However, the ACEi/ARB users with sepsis (HR: 1.29, 95% CI: 1.04-1.60, p = 0.021) or hypotension (HR: 1.21, 95% CI: 1.02-1.14, p = 0.034) were found to have an increased AKI risk in subgroup analysis. Nevertheless, compared with the non-users, the ACEi/ARB users were associated with a lower incidence of mortality or dialysis within 1 year (log-rank p = 0.011). Conclusions: Premorbid ACEi/ARB usage did not increase the incidence of AKI, and was associated with a lower 1-year mortality and dialysis rate in patients admitted to ICUs. Regarding the results of subgroup analysis, renin-angiotensin-aldosterone system blockade may still be safe and beneficial in the absence of sepsis or circulation failure. Further large-scale studies are needed to confirm our findings.

15.
Angew Chem Int Ed Engl ; 62(40): e202311352, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37592375

RESUMEN

A few-layer fullerene network possesses several advantageous characteristics, including a large surface area, abundant active sites, high charge mobility, and an appropriate band gap and band edge for solar water splitting. Herein, we report for the first time that the few-layer fullerene network shows interesting photocatalytic performance in pure water splitting into H2 and H2 O2 in the absence of any sacrificial reagents. Under optimal conditions, the H2 and H2 O2 evolution rates can reach 91 and 116 µmol g-1 h-1 , respectively, with good stability. This work demonstrates the novel application of the few-layer fullerene network in the field of energy conversion.

16.
Angew Chem Int Ed Engl ; 62(46): e202313074, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37789646

RESUMEN

Herein, we report divergent additions of 2,2'-diazidobiphenyls to C60 and Sc3 N@Ih -C80 . In stark contrast to that of the previously reported bis-azide additions, the unexpected cascade reaction leads to the dearomative formation of azafulleroids 2 fused with a 7-6-5-membered ring system in the case of C60 . In contrast, the corresponding reaction with Sc3 N@Ih -C80 switches to the C-H insertion pathway, thereby resulting in multiple isomers, including a carbazole-derived [6,6]-azametallofulleroid 3 and a [5,6]-azametallofulleroid 4 and an unusual 1,2,3,6-tetrahydropyrrolo[3,2-c]carbazole-derived metallofullerene 5, whose molecular structures have been unambiguously determined by single-crystal X-ray diffraction analyses. Among them, the addition type of 5 is observed for the first time in all reported additions of azides to fullerenes. Furthermore, unexpected isomerizations from 3 to 5 and from 4 to 5 have been discovered, providing the first examples of the isomerization of an azafulleroid to a carbazole-derived fullerene rather than an aziridinofullerene. In particular, the isomerism of the [5,6]-isomer 4 to the [5,6]-isomer 5 is unprecedented in fullerene chemistry, contradicting the present understanding that isomerization generally occurs between [5,6]- and [6,6]-isomers. Control experiments have been carried out to rationalize the reaction mechanism. Furthermore, representative azafulleroids have been applied in organic solar cells, thereby resulting in improved power conversion efficiencies.

17.
J Am Chem Soc ; 144(47): 21587-21595, 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36354144

RESUMEN

Azafullerenes derived from nitrogen substitution of carbon cage atoms render direct modifications of the cage skeleton, electronic, and physicochemical properties of fullerene. Gas-phase ionized monometallic endohedral azafullerene (MEAF) [La@C81N]+ formed via fragmentation of a La@C82 monoadduct was detected in 1999, but the pristine MEAF has never been synthesized. Here, we report the synthesis, isolation, and characterization of the first pristine MEAF La@C81N, tackling the two-decade challenge. Single-crystal X-ray diffraction study reveals that La@C81N has an 82-atom cage with a pseudo C3v(8) symmetry. According to DFT computations, the nitrogen substitution site within the C82 cage is proposed to locate at a hexagon/hexagon/pentagon junction far away from the encapsulated La atom. La@C81N exists in stable monomer form with a closed-shell electronic state, which is drastically different from the open-shell electronic state of the original La@C82. Our breakthrough in synthesizing a new type of azafullerene offers a new insight into the skeletal modification of fullerenes.

18.
Acta Biochim Biophys Sin (Shanghai) ; 54(12): 1889-1896, 2022 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-36789689

RESUMEN

Colorectal cancer (CRC) is a malignant tumor with a high incidence and mortality worldwide. Currently, the underlying molecular mechanisms of CRC are still unclear. Zinc finger protein 3 (ZNF3) is a zinc-finger transcription factor that has been reported as a candidate for breast cancer prognosis, suggesting its involvement in the regulation of tumorigenesis. However, the association between ZNF3 and CRC remains unknown. To investigate the role of ZNF3 in CRC, we first analyze the correlation between ZNF3 expression and CRC, and the results demonstrate that ZNF3 is highly expressed in CRC tissue and cells, which is associated with the age of CRC patients. In vitro studies show that ZNF3 overexpression promotes CRC cell migration. Compared to control cells, knockdown of ZNF3 markedly suppresses CRC cell proliferation, migration and invasion and promotes G0/G1 phase cell cycle arrest. The expressions of the EMT-related markers TWIST and MMP1 are significantly decreased when ZNF3 is silenced. Additionally, overexpression of MMP1 and TWIST exacerbates CRC cell proliferation, accelerates the S phase cell cycle in ZNF3-knockdown SW480 cells, and increases cell migration and invasion through Transwell chambers. These data suggest that ZNF3 is involved in cellular proliferation, migration and invasion by regulating MMP1 and TWIST in CRC cells.


Asunto(s)
Neoplasias Colorrectales , Metaloproteinasa 1 de la Matriz , Invasividad Neoplásica , Factores de Transcripción , Humanos , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Transformación Celular Neoplásica , Neoplasias Colorrectales/metabolismo , Regulación Neoplásica de la Expresión Génica , Metaloproteinasa 1 de la Matriz/genética , Metaloproteinasa 1 de la Matriz/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Dedos de Zinc , Proteína 1 Relacionada con Twist/genética , Proteína 1 Relacionada con Twist/metabolismo
19.
Beilstein J Org Chem ; 18: 1249-1255, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36158175

RESUMEN

The electrochemical preparation of 2-aminothiazoles has been achieved by the reaction of active methylene ketones with thioureas assisted by ᴅʟ-alanine using NH4I as a redox mediator. The electrochemical protocol proceeds in an undivided cell equipped with graphite plate electrodes under constant current conditions. Various active methylene ketones, including ß-keto ester, ß-keto amide, ß-keto nitrile, ß-keto sulfone and 1,3-diketones, can be converted to the corresponding 2-aminothiazoles. Mechanistically, the in situ generated α-iodoketone was proposed to be the key active species.

20.
J Am Chem Soc ; 143(21): 8078-8085, 2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-34010566

RESUMEN

Monometallic cyanide clusterfullerenes (CYCFs) represent a unique branch of endohedral clusterfullerenes with merely one metal atom encapsulated, offering a model system for elucidating structure-property correlation, while up to now only C82 and C76 cages have been isolated for the pristine CYCFs. C84 is one of the most abundant fullerenes and has 24 isomers obeying the isolated pentagon rule (IPR), among which 14 isomers have been already isolated, whereas the C2v(17)-C84 isomer has lower relative energy than several isolated isomers but never been found for empty and endohedral fullerenes. Herein, four novel C84-based pristine CYCFs with variable encapsulated metals and isomeric cages, including MCN@C2(13)-C84 (M = Y, Dy, Tb) and DyCN@C2v(17)-C84, have been synthesized and isolated, fulfilling the first identification of the missing C2v(17)-C84 isomer, which can be interconverted from the C2(13)-C84 isomer through two steps of Stone-Wales transformation. The molecular structures of these four C84-based CYCFs are determined unambiguously by single-crystal X-ray diffraction. Surprisingly, although the ionic radii of Y3+, Dy3+, and Tb3+ differ slightly by only 0.01 Å, such a subtle difference leads to an obvious change in the metal-cage interactions, as inferred from the distance between the metal atom and the nearest hexagon center of the C2(13)-C84 cage. On the other hand, upon altering the isomeric cage from DyCN@C2(13)-C84 to DyCN@C2v(17)-C84, the Dy-cage distance changes as well, indicating the interplay between the encapsulated DyCN cluster and the outer cage. Therefore, we demonstrate that the metal-cage interactions within CYCFs can be steered via both internal and external routes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA