Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Plant Biotechnol J ; 21(8): 1542-1559, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37057908

RESUMEN

High-temperature (HT) stress at flowering stage causes significant damage to soybean, including pollen abortion and fertilization failure, but few genes involved in male fertility regulation under HT stress in soybean have been characterized. Here, we demonstrated that miR156b-GmSPL2b module involved in male fertility regulation of soybean cytoplasmic male sterility (CMS)-based restorer line under HT stress. Overexpression of miR156b decreased male fertility in soybean CMS-based restorer line and its hybrid F1 with CMS line under HT stress. RNA-seq analysis found that miR156b mediated male fertility regulation in soybean under HT stress by regulating the expression of pollen development and HT response related genes. Metabolomic analysis of miR156bOE revealed reduction in flavonoid content under HT stress. Integrated transcriptomic and metabolomic analysis showed that the overexpression of miR156b caused flavonoid metabolism disorder in soybean flower bud under HT stress. Knockout of GmSPL2b also decreased the thermotolerance of soybean CMS-based restorer line during flowering. Moreover, GmSPL2b turned out to be directly bounded to the promoter of GmHSFA6b. Further verification indicated that GmHSFA6b overexpression enhanced HT tolerance in Arabidopsis during flowering. Substance content and gene expression analysis revealed that miR156b-GmSPL2b may mediate reactive oxygen species clearance by regulating flavonoid metabolism, thus participating in the regulation of male fertility in soybean under HT stress. This study not only provided important progress for understanding the molecular mechanism of miR156b-GmSPL2b regulating the male fertility of soybean CMS-based restorer line under HT stress, but also provided genetic resources and theoretical basis for creating HT-tolerant strong restorer lines.


Asunto(s)
Glycine max , Infertilidad Vegetal , Glycine max/genética , Infertilidad Vegetal/genética , Temperatura , Citosol , Fertilidad/genética , Citoplasma/genética
2.
Theor Appl Genet ; 135(5): 1797-1810, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35275252

RESUMEN

KEY MESSAGE: Software for high imputation accuracy in soybean was identified. Imputed dataset could significantly reduce the interval of genomic regions controlling traits, thus greatly improve the efficiency of candidate gene identification. Genotype imputation is a strategy to increase marker density of existing datasets without additional genotyping. We compared imputation performance of software BEAGLE 5.0, IMPUTE 5 and AlphaPlantImpute and tested software parameters that may help to improve imputation accuracy in soybean populations. Several factors including marker density, extent of linkage disequilibrium (LD), minor allele frequency (MAF), etc., were examined for their effects on imputation accuracy across different software. Our results showed that AlphaPlantImpute had a higher imputation accuracy than BEAGLE 5.0 or IMPUTE 5 tested in each soybean family, especially if the study progeny were genotyped with an extremely low number of markers. LD extent, MAF and reference panel size were positively correlated with imputation accuracy, a minimum number of 50 markers per chromosome and MAF of SNPs > 0.2 in soybean line were required to avoid a significant loss of imputation accuracy. Using the software, we imputed 5176 soybean lines in the soybean nested mapping population (NAM) with high-density markers of the 40 parents. The dataset containing 423,419 markers for 5176 lines and 40 parents was deposited at the Soybase. The imputed NAM dataset was further examined for the improvement of mapping quantitative trait loci (QTL) controlling soybean seed protein content. Most of the QTL identified were at identical or at similar position based on initial and imputed datasets; however, QTL intervals were greatly narrowed. The resulting genotypic dataset of NAM population will facilitate QTL mapping of traits and downstream applications. The information will also help to improve genotyping imputation accuracy in self-pollinated crops.


Asunto(s)
Glycine max , Sitios de Carácter Cuantitativo , Frecuencia de los Genes , Genotipo , Desequilibrio de Ligamiento , Polimorfismo de Nucleótido Simple , Glycine max/genética
3.
Int J Mol Sci ; 23(20)2022 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36293079

RESUMEN

Cytoplasmic male sterility (CMS) lays a foundation for the utilization of heterosis in soybean. The soybean CMS line SXCMS5A is an excellent CMS line exhibiting 100% male sterility. Cytological analysis revealed that in SXCMS5A compared to its maintainer SXCMS5B, its tapetum was vacuolated and abnormally developed. To identify the genes and metabolic pathways involving in pollen abortion of SXCMS5A, a comparative transcriptome analysis was conducted between SXCMS5A and SXCMS5B using flower buds. A total of 372,973,796 high quality clean reads were obtained from 6 samples (3 replicates for each material), and 840 differentially expressed genes (DEGs) were identified, including 658 downregulated and 182 upregulated ones in SXCMS5A compared to SXCMS5B. Among them, 13 DEGs, i.e., 12 open reading frames (ORFs) and 1 COX2, were mitochondrial genome genes in which ORF178 and ORF103c were upregulated in CMS lines and had transmembrane domain(s), therefore, identified as CMS candidate mitochondrial genes of SXCMS5A. Furthermore, numerous DEGs were associated with pollen wall development, carbohydrate metabolism, sugar transport, reactive oxygen species (ROS) metabolism and transcription factor. Some of them were further confirmed by quantitative real time PCR analysis between CMS lines with the same cytoplasmic source as SXCMS5A and their respective maintainer lines. The amount of soluble sugar and adenosine triphosphate and the activity of catalase and ascorbic acid oxidase showed that energy supply and ROS scavenging decreased in SXCMS5A compared to SXCMS5B. These findings provide valuable information for further understanding the molecular mechanism regulating the pollen abortion of soybean CMS.


Asunto(s)
Glycine max , Infertilidad Vegetal , Glycine max/metabolismo , Infertilidad Vegetal/genética , Especies Reactivas de Oxígeno/metabolismo , Catalasa/metabolismo , Regulación de la Expresión Génica de las Plantas , Ciclooxigenasa 2/metabolismo , Perfilación de la Expresión Génica , Polen/metabolismo , Citoplasma/genética , Citoplasma/metabolismo , Transcriptoma , Azúcares/metabolismo , Factores de Transcripción/metabolismo , Ácido Ascórbico/metabolismo , Adenosina Trifosfato/metabolismo , Flores/genética , Flores/metabolismo
4.
Funct Integr Genomics ; 21(1): 43-57, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33404916

RESUMEN

In soybean, only one mitochondrial genome of cultispecies has been completely obtained. To explore the effect of mitochondrial genome on soybean cytoplasmic male sterility (CMS), two CMS lines and three maintainer lines were used for sequencing. Comparative analysis showed that mitochondrial genome of the CMS line was more compact than that of its maintainer line, but genes were highly conserved. Conserved and unique sequence coexisted in the genomes. Mitochondrial genomes contained different sequence lengths and copy numbers of repeats between CMS line and maintainer line. Large and short repeats mediated intramolecular and intermolecular recombination in mitochondria. Unique sequences and genes were also involved in recombination process and constituted a complex network. orf178 and orf261 were identified as CMS-associated candidate genes. They had sequence characteristics of reported CMS genes in other crops and could be transcribed in CMS lines but not in maintainer lines. This report reveals mitochondrial genome of soybean CMS lines and compares complete mitochondrial sequence between CMS lines and their maintainer lines. The information will be helpful in further understanding the characteristics of soybean mitochondrial genome and the mechanism underlying CMS.


Asunto(s)
Genoma Mitocondrial , Glycine max/genética , Infertilidad Vegetal , Secuencia Conservada , Genoma de Planta , Sistemas de Lectura Abierta , Recombinación Genética , Selección Artificial , Glycine max/fisiología
5.
BMC Plant Biol ; 21(1): 578, 2021 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-34872520

RESUMEN

BACKGROUND: Pectin methylesterase (PME) is one of pectin-modifying enzyme that affects the pectin homeostasis in cell wall and regulates plant growth and diverse biological processes. The PME genes have been well explored and characterized in different plants. Nevertheless, systematic research on the soybean (Glycine max L.) PME genes remain lacking. RESULTS: We identified 127 Glycine max PME genes (GmPME) from the soybean Wm82.a2.v1 genome, which unevenly distributed on 20 soybean chromosomes. Phylogenetic analysis classified the GmPME genes into four clades (Group I, Group II, Group III and Group IV). GmPME gene members in the same clades displayed similar gene structures and motif patterns. The gene family expansion analysis demonstrated that segmental duplication was the major driving force to acquire novel GmPME genes compared to the tandem duplication events. Further synteny and evolution analyses showed that the GmPME gene family experienced strong purifying selective pressures during evolution. The cis-element analyses together with the expression patterns of the GmPME genes in various tissues suggested that the GmPME genes broadly participate in distinct biological processes and regulate soybean developments. Importantly, based on the transcriptome data and quantitative RT-PCR validations, we examined the potential roles of the GmPME genes in regulating soybean flower bud development and seed germination. CONCLUSION: In conclusion, we provided a comprehensive characterization of the PME genes in soybean, and our work laid a foundation for the functional study of GmPME genes in the future.


Asunto(s)
Hidrolasas de Éster Carboxílico/genética , Evolución Molecular , Genoma de Planta , Glycine max/enzimología , Glycine max/genética , Flores/enzimología , Flores/genética , Genes de Plantas , Germinación , Motivos de Nucleótidos , Filogenia , Regiones Promotoras Genéticas , Transcriptoma
6.
J Exp Bot ; 72(22): 7729-7742, 2021 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-34397079

RESUMEN

In soybean, heterosis achieved through the three-line system has been gradually applied in breeding to increase yield, but the underlying molecular mechanism remains unknown. We conducted a genetic analysis using the pollen fertility of offspring of the cross NJCMS1A×NJCMS1C. All the pollen of F1 plants was semi-sterile; in F2, the ratio of pollen-fertile plants to pollen-semi-sterile plants was 208:189. This result indicates that NJCMS1A is gametophyte sterile, and the fertility restoration of NJCMS1C to NJCMS1A is a quality trait controlled by a single gene locus. Using bulked segregant analysis, the fertility restorer gene Rf in NJCMS1C was located on chromosome 16 between the markers BARCSOYSSR_16_1067 and BARCSOYSSR_16_1078. Sequence analysis of genes in that region showed that GmPPR576 was non-functional in rf cultivars. GmPPR576 has one functional allele in Rf cultivars but three non-functional alleles in rf cultivars. Phylogenetic analysis showed that the GmPPR576 locus evolved rapidly with the presence of male-sterile cytoplasm. GmPPR576 belongs to the RFL fertility restorer gene family and is targeted to the mitochondria. GmPPR576 was knocked out in soybean N8855 using CRISPR/Cas9. The T1 plants showed sterile pollen, and T2 plants produced few pods at maturity. The results indicate that GmPPR576 is the fertility restorer gene of NJCMS1A.


Asunto(s)
Glycine max , Infertilidad Vegetal , Citoplasma , Fertilidad/genética , Filogenia , Infertilidad Vegetal/genética , Glycine max/genética
7.
Int J Mol Sci ; 22(8)2021 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-33923457

RESUMEN

The three-amino-acid-loop-extension (TALE) superfamily genes broadly existed in plants, which played important roles in plant growth, development and abiotic stress responses. In this study, we identified 68 Glycine max TALE (GmTALE) superfamily members. Phylogenetic analysis divided the GmTALE superfamily into the BEL1-like (BLH/BELL homeodomain) and the KNOX (KNOTTED-like homeodomain) subfamilies. Moreover, the KNOX subfamily could be further categorized into three clades (KNOX Class I, KNOX Class II and KNOX Class III). The GmTALE genes showed similarities in the gene structures in the same subfamily or clade, whose coding proteins exhibited analogous motif and conserved domain compositions. Besides, synteny analyses and evolutionary constraint evaluations of the TALE members among soybean and different species provided more clues for GmTALE superfamily evolution. The cis-element analyses in gene promoter regions and relevant gene expression profiling revealed different regulating roles of GmTALE genes during soybean plant development, saline and dehydration stresses. Genome-wide characterization, evolution, and expression profile analyses of GmTALE genes can pave the way for future gene functional research and facilitate their roles for applications in genetic improvement on soybean in saline and dehydration stresses.


Asunto(s)
Glycine max/genética , Proteínas de Homeodominio/genética , Familia de Multigenes , Proteínas de Plantas/genética , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Proteínas de Homeodominio/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Glycine max/clasificación , Glycine max/metabolismo , Estrés Fisiológico
8.
Int J Mol Sci ; 22(5)2021 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-33671046

RESUMEN

MicroRNAs (miRNAs), a class of noncoding small RNAs (sRNAs), are widely involved in the response to high temperature (HT) stress at both the seedling and flowering stages. To dissect the roles of miRNAs in regulating male fertility in soybean cytoplasmic male sterility (CMS)-based F1 under HT, sRNA sequencing was performed using flower buds from HT-tolerant and HT-sensitive CMS-based F1 combinations (NF1 and YF1, respectively). A total of 554 known miRNAs, 59 new members of known miRNAs, 712 novel miRNAs, and 1145 target genes of 580 differentially expressed miRNAs (DEMs) were identified under normal temperature and HT conditions. Further integrated analysis of sRNA and transcriptome sequencing found that 21 DEMs and 15 differentially expressed target genes, such as gma-miR397a/Laccase 2, gma-miR399a/Inorganic phosphate transporter 1-4, and gma-miR4413a/PPR proteins, mitochondrial-like, were negatively regulated under HT stress. Furthermore, all members of the gma-miR156 family were suppressed by HT stress in both NF1 and YF1, but were highly expressed in YF1 under HT condition. The negative correlation between gma-miR156b and its target gene squamosa promoter-binding protein-like 2b was confirmed by expression analysis, and overexpression of gma-miR156b in Arabidopsis led to male sterility under HT stress. With these results, we proposed that miRNAs play an important role in the regulation of male fertility stability in soybean CMS-based F1 under HT stress.


Asunto(s)
Citoplasma/metabolismo , Regulación de la Expresión Génica de las Plantas , Glycine max/fisiología , Calor , MicroARNs/genética , Infertilidad Vegetal/genética , Proteínas de Soja/metabolismo , Perfilación de la Expresión Génica , Proteínas de Soja/genética , Estrés Fisiológico , Transcriptoma
9.
BMC Plant Biol ; 20(1): 415, 2020 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-32891114

RESUMEN

BACKGROUND: GRAS proteins are crucial transcription factors, which are plant-specific and participate in various plant biological processes. Thanks to the rapid progress of the whole genome sequencing technologies, the GRAS gene families in different plants have been broadly explored and studied. However, comprehensive research on the soybean (Glycine max) GRAS gene family is relatively lagging. RESULTS: In this study, 117 Glycine max GRAS genes (GmGRAS) were identified. Further phylogenetic analyses showed that the GmGRAS genes could be categorized into nine gene subfamilies: DELLA, HAM, LAS, LISCL, PAT1, SCL3, SCL4/7, SCR and SHR. Gene structure analyses turned out that the GmGRAS genes lacked introns and were relatively conserved. Conserved domains and motif patterns of the GmGRAS members in the same subfamily or clade exhibited similarities. Notably, the expansion of the GmGRAS gene family was driven both by gene tandem and segmental duplication events. Whereas, segmental duplications took the major role in generating new GmGRAS genes. Moreover, the synteny and evolutionary constraints analyses of the GRAS proteins among soybean and distinct species (two monocots and four dicots) provided more detailed evidence for GmGRAS gene evolution. Cis-element analyses indicated that the GmGRAS genes may be responsive to diverse environmental stresses and regulate distinct biological processes. Besides, the expression patterns of the GmGRAS genes were varied in various tissues, during saline and dehydration stresses and during seed germination processes. CONCLUSIONS: We conducted a systematic investigation of the GRAS genes in soybean, which may be valuable in paving the way for future GmGRAS gene studies and soybean breeding.


Asunto(s)
Estudio de Asociación del Genoma Completo , Glycine max/genética , Familia de Multigenes , Proteínas de Plantas/genética , Factores de Transcripción/genética , Evolución Molecular , Genes de Plantas , Proteínas de Plantas/metabolismo , Glycine max/metabolismo , Factores de Transcripción/metabolismo
10.
Int J Mol Sci ; 20(12)2019 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-31212804

RESUMEN

Abnormal reactive oxygen species (ROS) may mediate cytoplasmic male sterility (CMS). To observe the effect of ROS on soybean CMS, metabolite content and antioxidant enzyme activity in the flower buds between soybean N8855-derived CMS line and its maintainer were compared. Of the 612 metabolites identified, a total of 74 metabolites were significantly differentiated in flower buds between CMS line and its maintainer. The differential metabolites involved 32 differential flavonoids, 13 differential phenolamides, and 1 differential oxidized glutathione (GSSG) belonging to a non-enzymatic ROS scavenging system. We observed lower levels of flavonoids and antioxidant enzyme activities in flower buds of the CMS line than in its maintainer. Our results suggest that deficiencies of enzymatic and non-enzymatic ROS scavenging systems in soybean CMS line cannot eliminate ROS in anthers effectively, excessive accumulation of ROS triggered programmed cell death and ultimately resulted in pollen abortion of soybean CMS line.


Asunto(s)
Flores/metabolismo , Glycine max/fisiología , Metabolómica , Desarrollo de la Planta , Infertilidad Vegetal , Biología Computacional/métodos , Citoplasma/genética , Citoplasma/metabolismo , Metaboloma , Metabolómica/métodos , Desarrollo de la Planta/genética , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
11.
BMC Genomics ; 19(1): 663, 2018 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-30208848

RESUMEN

BACKGROUND: Cytoplasmic male sterility (CMS) is a natural phenomenon of pollen abortion caused by the interaction between cytoplasmic genes and nuclear genes. CMS is a simple and effective pollination control system, and plays an important role in crop heterosis utilization. Circular RNAs (circRNAs) are a vital type of non-coding RNAs, which play crucial roles in microRNAs (miRNAs) function and post-transcription control. To explore the expression profile and possible functions of circRNAs in the soybean CMS line NJCMS1A and its maintainer NJCMS1B, high-throughput deep sequencing coupled with RNase R enrichment strategy was conducted. RESULTS: CircRNA libraries were constructed from flower buds of NJCMS1A and its maintainer NJCMS1B with three biological replicates. A total of 2867 circRNAs were identified, with 1009 circRNAs differentially expressed between NJCMS1A and NJCMS1B based on analysis of high-throughput sequencing. Of the 12 randomly selected circRNAs with different expression levels, 10 showed consistent expression patterns based on high-throughput sequencing and quantitative real-time PCR analyses. Tissue specific expression patterns were also verified with two circRNAs by quantitative real-time PCR. Most parental genes of differentially expressed circRNAs were mainly involved in biological processes such as metabolic process, biological regulation, and reproductive process. Moreover, 83 miRNAs were predicted from the differentially expressed circRNAs, some of which were strongly related to pollen development and male fertility; The functions of miRNA targets were analyzed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG), and the target mRNAs were significantly enriched in signal transduction and programmed cell death. Furthermore, a total of 165 soybean circRNAs were predicted to contain at least one internal ribosome entry site (IRES) element and an open reading frame, indicating their potential to encode polypeptides or proteins. CONCLUSIONS: Our study indicated that the circRNAs might participate in the regulation of flower and pollen development, which could provide a new insight into the molecular mechanisms of CMS in soybean.


Asunto(s)
Citoplasma/genética , Glycine max/citología , Glycine max/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Infertilidad Vegetal/genética , ARN/genética , Análisis de Secuencia de ARN , Secuencia de Bases , Perfilación de la Expresión Génica , Ontología de Genes , Polen/crecimiento & desarrollo , ARN Circular , Glycine max/crecimiento & desarrollo
12.
BMC Genomics ; 18(1): 596, 2017 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-28806912

RESUMEN

BACKGROUND: DNA methylation is an important epigenetic modification. It can regulate the expression of many key genes without changing the primary structure of the genomic DNA, and plays a vital role in the growth and development of the organism. The genome-wide DNA methylation profile of the cytoplasmic male sterile (CMS) line in soybean has not been reported so far. RESULTS: In this study, genome-wide comparative analysis of DNA methylation between soybean CMS line NJCMS5A and its maintainer NJCMS5B was conducted by whole-genome bisulfite sequencing. The results showed 3527 differentially methylated regions (DMRs) and 485 differentially methylated genes (DMGs), including 353 high-credible methylated genes, 56 methylated genes coding unknown protein and 76 novel methylated genes with no known function were identified. Among them, 25 DMRs were further validated that the genome-wide DNA methylation data were reliable through bisulfite treatment, and 9 DMRs were confirmed the relationship between DNA methylation and gene expression by qRT-PCR. Finally, 8 key DMGs possibly associated with soybean CMS were identified. CONCLUSIONS: Genome-wide DNA methylation profile of the soybean CMS line NJCMS5A and its maintainer NJCMS5B was obtained for the first time. Several specific DMGs which participated in pollen and flower development were further identified to be probably associated with soybean CMS. This study will contribute to further understanding of the molecular mechanism behind soybean CMS.


Asunto(s)
Citoplasma/metabolismo , Metilación de ADN , Genómica , Glycine max/citología , Glycine max/genética , Infertilidad Vegetal/genética , Elementos Transponibles de ADN/genética , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Genes de Plantas/genética , Anotación de Secuencia Molecular , Especificidad de la Especie , Secuenciación Completa del Genoma
13.
Theor Appl Genet ; 130(11): 2327-2343, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28828506

RESUMEN

KEY MESSAGE: The innovative RTM-GWAS procedure provides a relatively thorough detection of QTL and their multiple alleles for germplasm population characterization, gene network identification, and genomic selection strategy innovation in plant breeding. The previous genome-wide association studies (GWAS) have been concentrated on finding a handful of major quantitative trait loci (QTL), but plant breeders are interested in revealing the whole-genome QTL-allele constitution in breeding materials/germplasm (in which tremendous historical allelic variation has been accumulated) for genome-wide improvement. To match this requirement, two innovations were suggested for GWAS: first grouping tightly linked sequential SNPs into linkage disequilibrium blocks (SNPLDBs) to form markers with multi-allelic haplotypes, and second utilizing two-stage association analysis for QTL identification, where the markers were preselected by single-locus model followed by multi-locus multi-allele model stepwise regression. Our proposed GWAS procedure is characterized as a novel restricted two-stage multi-locus multi-allele GWAS (RTM-GWAS, https://github.com/njau-sri/rtm-gwas ). The Chinese soybean germplasm population (CSGP) composed of 1024 accessions with 36,952 SNPLDBs (generated from 145,558 SNPs, with reduced linkage disequilibrium decay distance) was used to demonstrate the power and efficiency of RTM-GWAS. Using the CSGP marker information, simulation studies demonstrated that RTM-GWAS achieved the highest QTL detection power and efficiency compared with the previous procedures, especially under large sample size and high trait heritability conditions. A relatively thorough detection of QTL with their multiple alleles was achieved by RTM-GWAS compared with the linear mixed model method on 100-seed weight in CSGP. A QTL-allele matrix (402 alleles of 139 QTL × 1024 accessions) was established as a compact form of the population genetic constitution. The 100-seed weight QTL-allele matrix was used for genetic characterization, candidate gene prediction, and genomic selection for optimal crosses in the germplasm population.


Asunto(s)
Estudios de Asociación Genética/métodos , Genética de Población , Glycine max/genética , Fitomejoramiento , Alelos , Simulación por Computador , Marcadores Genéticos , Haplotipos , Desequilibrio de Ligamiento , Modelos Genéticos , Fenotipo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Semillas , Selección Genética
14.
BMC Genomics ; 17: 24, 2016 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-26729289

RESUMEN

BACKGROUND: Cytoplasmic male sterility (CMS) provides crucial breeding materials that facilitate hybrid seed production in various crops, and thus plays an important role in the study of hybrid vigor (heterosis), in plants. However, the CMS regulatory network in soybean remains unclear. MicroRNAs (miRNAs) play crucial roles in flower and pollen development by targeting genes that regulate their expression in plants. To identify the miRNAs and their targets that exist in the soybean CMS line NJCMS1A and its maintainer NJCMS1B, high-throughput sequencing and degradome analysis were conducted in this study. RESULTS: Two small RNA libraries were constructed from the flower buds of the soybean CMS line NJCMS1A and its maintainer NJCMS1B. A total of 105 new miRNAs present on the other arm of known pre-miRNAs, 23 new miRNA members, 158 novel miRNAs and 160 high-confidence soybean miRNAs were identified using high-throughput sequencing. Among the identified miRNAs, 101 differentially expressed miRNAs with greater than two-fold changes between NJCMS1A and NJCMS1B were discovered. The different expression levels of selected miRNAs were confirmed by stem-loop quantitative real-time PCR. A degradome analysis showed that 856 targets were predicted to be targeted by 296 miRNAs, including a squamosa promoter-binding protein-like transcription factor family protein, a pentatricopeptide repeat-containing protein, and an auxin response factor, which were previously shown to be involved in floral organ or anther development in plants. Additionally, some targets, including a MADS-box transcription factor, NADP-dependent isocitrate dehydrogenase and NADH-ubiquinone oxidoreductase 24 kDa subunit, were identified, and they may have some relationship with the programmed cell death, reactive oxygen species accumulation and energy deficiencies, which might lead to soybean male sterility. CONCLUSIONS: The present study is the first to use deep sequencing technology to identify miRNAs and their targets in the flower buds of the soybean CMS line NJCMS1A and its maintainer NJCMS1B. The results revealed that the miRNAs might participate in flower and pollen development, which could facilitate our understanding of the molecular mechanisms behind CMS in soybean.


Asunto(s)
Citoplasma/genética , Flores/genética , Glycine max/genética , MicroARNs/genética , Infertilidad Vegetal/genética , Citoplasma/metabolismo , Complejo I de Transporte de Electrón/genética , Flores/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Secuenciación de Nucleótidos de Alto Rendimiento , Polen/genética , Estabilidad del ARN/genética , Semillas/genética , Glycine max/crecimiento & desarrollo
15.
Plant Cell Physiol ; 57(6): 1189-209, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27057003

RESUMEN

Plant U-box (PUB) E3 ubiquitin ligases play important roles in hormone signaling pathways and response to abiotic stresses, but little is known about them in soybean, Glycine max. Here, we identified and characterized 125 PUB genes from the soybean genome, which were classified into eight groups according to their protein domains. Soybean PUB genes (GmPUB genes) are broadly expressed in many tissues and are a little more abundant in the roots than in the other tissues. Nine GmPUB genes, GmPUB1-GmPUB9, showed induced expression patterns by drought, and the expression of GmPUB8 was also induced by exogenous ABA and NaCl. GmPUB8 was localized to post-Golgi compartments, interacting with GmE2 protein as demonstrated by yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) experiments, and showed E3 ubiquitin ligase activity by in vitro ubiquitination assay. Heterogeneous overexpression of GmPUB8 in Arabidopsis showed decreased drought tolerance, enhanced sensitivity with respect to osmotic and salt stress inhibition of seed germination and seedling growth, and inhibited ABA- and mannitol-mediated stomatal closure. Eight drought stress-related genes were less induced in GmPUB8-overexpressing Arabidopsis after drought treatment compared with the wild type and the pub23 mutant. Taken together, our results suggested that GmPUB8 might negatively regulate plant response to drought stress. In addition, Y2H and BiFC showed that GmPUB8 interacted with soybean COL (CONSTANS LIKE) protein. GmPUB8-overexpressing Arabidopsis flowered earlier under middle- and short-day conditions but later under long-day conditions, indicating that GmPUB8 might regulate flowering time in the photoperiod pathway. This study helps us to understand the functions of PUB E3 ubiquitin ligases in soybean.


Asunto(s)
Arabidopsis/fisiología , Sequías , Genoma de Planta , Glycine max/enzimología , Glycine max/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ácido Abscísico/farmacología , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Flores/efectos de los fármacos , Flores/fisiología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Aparato de Golgi/efectos de los fármacos , Aparato de Golgi/metabolismo , Manitol/farmacología , Mutación/genética , Ósmosis/efectos de los fármacos , Fenotipo , Fotoperiodo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Estomas de Plantas/efectos de los fármacos , Estomas de Plantas/fisiología , Plantas Modificadas Genéticamente , Unión Proteica/efectos de los fármacos , Protoplastos/efectos de los fármacos , Protoplastos/metabolismo , Saccharomyces cerevisiae/metabolismo , Cloruro de Sodio/farmacología , Glycine max/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/genética
16.
New Phytol ; 210(4): 1298-310, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26832840

RESUMEN

Natural antisense transcripts (NATs) are commonly observed in eukaryotic genomes, but only a limited number of such genes have been identified as being involved in gene regulation in plants. In this research, we investigated the function of small RNA derived from a NAT in fiber cell development. Using a map-based cloning strategy for the first time in tetraploid cotton, we cloned a naked seed mutant gene (N1 ) encoding a MYBMIXTA-like transcription factor 3 (MML3)/GhMYB25-like in chromosome A12, GhMML3_A12, that is associated with fuzz fiber development. The extremely low expression of GhMML3_A12 in N1 is associated with NAT production, driven by its 3' antisense promoter, as indicated by the promoter-driven histochemical staining assay. In addition, small RNA deep sequencing analysis suggested that the bidirectional transcriptions of GhMML3_A12 form double-stranded RNAs and generate 21-22 nt small RNAs. Therefore, in a fiber-specific manner, small RNA derived from the GhMML3_A12 locus can mediate GhMML3_A12 mRNA self-cleavage and result in the production of naked seeds followed by lint fiber inhibition in N1 plants. The present research reports the first observation of gene-mediated NATs and siRNA directly controlling fiber development in cotton.


Asunto(s)
Fibra de Algodón , Regulación de la Expresión Génica de las Plantas , Gossypium/genética , ARN sin Sentido/genética , Gossypium/crecimiento & desarrollo , Gossypium/ultraestructura , Secuenciación de Nucleótidos de Alto Rendimiento , Especificidad de Órganos , Regiones Promotoras Genéticas/genética , División del ARN , ARN de Planta/genética , ARN Interferente Pequeño , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/ultraestructura , Análisis de Secuencia de ARN
17.
Theor Appl Genet ; 129(8): 1557-76, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27189002

RESUMEN

KEY MESSAGE: Utilizing an innovative GWAS in CSLRP, 44 QTL 199 alleles with 72.2 % contribution to SIFC variation were detected and organized into a QTL-allele matrix for cross design and gene annotation. The seed isoflavone content (SIFC) of soybeans is of great importance to health care. The Chinese soybean landrace population (CSLRP) as a genetic reservoir was studied for its whole-genome quantitative trait loci (QTL) system of the SIFC using an innovative restricted two-stage multi-locus genome-wide association study procedure (RTM-GWAS). A sample of 366 landraces was tested under four environments and sequenced using RAD-seq (restriction-site-associated DNA sequencing) technique to obtain 116,769 single nucleotide polymorphisms (SNPs) then organized into 29,119 SNP linkage disequilibrium blocks (SNPLDBs) for GWAS. The detected 44 QTL 199 alleles on 16 chromosomes (explaining 72.2 % of the total phenotypic variation) with the allele effects (92 positive and 107 negative) of the CSLRP were organized into a QTL-allele matrix showing the SIFC population genetic structure. Additional differentiation among eco-regions due to the SIFC in addition to that of genome-wide markers was found. All accessions comprised both positive and negative alleles, implying a great potential for recombination within the population. The optimal crosses were predicted from the matrices, showing transgressive potentials in the CSLRP. From the detected QTL system, 55 candidate genes related to 11 biological processes were χ (2)-tested as an SIFC candidate gene system. The present study explored the genome-wide SIFC QTL/gene system with the innovative RTM-GWAS and found the potentials of the QTL-allele matrix in optimal cross design and population genetic and genomic studies, which may have provided a solution to match the breeding by design strategy at both QTL and gene levels in breeding programs.


Asunto(s)
Glycine max/genética , Isoflavonas/química , Sitios de Carácter Cuantitativo , Semillas/química , Alelos , ADN de Plantas/genética , Estudios de Asociación Genética , Genética de Población , Haplotipos , Desequilibrio de Ligamiento , Fenotipo , Fitomejoramiento , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN , Glycine max/química
18.
J Exp Bot ; 66(20): 6311-25, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26163701

RESUMEN

A representative sample comprising 366 accessions from the Chinese soybean landrace population (CSLRP) was tested under four growth environments for determination of the whole-genome quantitative trait loci (QTLs) system of the 100-seed weight trait (ranging from 4.59g to 40.35g) through genome-wide association study (GWAS). A total of 116 769 single nucleotide polymorphisms (SNPs) were identified and organized into 29 121 SNP linkage disequilibrium blocks (SNPLDBs) to fit the property of multiple alleles/haplotypes per locus in germplasm. An innovative two-stage GWAS was conducted using a single locus model for shrinking the marker number followed by a multiple loci model utilizing a stepwise regression for the whole-genome QTL identification. In total, 98.45% of the phenotypic variance (PV) was accounted for by four large-contribution major QTLs (36.33%), 51 small-contribution major QTLs (43.24%), and a number of unmapped minor QTLs (18.88%), with the QTL×environment variance representing only 1.01% of the PV. The allele numbers of each QTL ranged from two to 10. A total of 263 alleles along with the respective allele effects were estimated and organized into a 263×366 matrix, giving the compact genetic constitution of the CSLRP. Differentiations among the ecoregion matrices were found. No landrace had alleles which were all positive or all negative, indicating a hidden potential for recombination. The optimal crosses within and among ecoregions were predicted, and showed great transgressive potential. From the QTL system, 39 candidate genes were annotated, of which 26 were involved with the gene ontology categories of biological process, cellular component, and molecular function, indicating that diverse genes are involved in directing the 100-seed weight.


Asunto(s)
Ambiente , Glycine max/genética , Fitomejoramiento/métodos , Polimorfismo de Nucleótido Simple , China , Estudio de Asociación del Genoma Completo , Desequilibrio de Ligamiento , Recombinación Genética
19.
J Integr Plant Biol ; 56(10): 1009-19, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24751174

RESUMEN

This study was designed to reveal the genome-wide distribution of presence/absence variation (PAV) and to establish a database of polymorphic PAV markers in soybean. The 33 soybean whole-genome sequences were compared to each other with that of Williams 82 as a reference genome. A total of 33,127 PAVs were detected and 28,912 PAV markers with their primer sequences were designed as the database NJAUSoyPAV_1.0. The PAVs scattered on whole genome while only 518 (1.8%) overlapped with simple sequence repeats (SSRs) in BARCSOYSSR_1.0 database. In a random sample of 800 PAVs, 713 (89.13%) showed polymorphism among the 12 differential genotypes. Using 126 PAVs and 108 SSRs to test a Chinese soybean germplasm collection composed of 828 Glycine soja Sieb. et Zucc. and Glycine max (L.) Merr. accessions, the per locus allele number and its variation appeared less in PAVs than in SSRs. The distinctness among alleles/bands of PCR (polymerase chain reaction) products showed better in PAVs than in SSRs, potential in accurate marker-assisted allele selection. The association mapping results showed SSR + PAV was more powerful than any single marker systems. The NJAUSoyPAV_1.0 database has enriched the source of PCR markers, and may fit the materials with a range of per locus allele numbers, if jointly used with SSR markers.


Asunto(s)
Genoma de Planta , Glycine max/genética , Bases de Datos Genéticas , Repeticiones de Microsatélite , Polimorfismo Genético
20.
Plant Methods ; 20(1): 2, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172924

RESUMEN

BACKGROUND: The chloroplast genome (cp genome) is directly related to the study and analysis of molecular phylogeny and evolution of plants in the phylogenomics era. The cp genome, whereas, is highly plastic and exists as a heterogeneous mixture of sizes and physical conformations. It is advantageous to purify/enrich the circular chloroplast DNA (cpDNA) to reduce sequence complexity in cp genome research. Large-insert, ordered DNA libraries are more practical for genomics research than conventional, unordered ones. From this, a technique of constructing the ordered BAC library with the goal-insert cpDNA fragment is developed in this paper. RESULTS: This novel in-situ-process technique will efficiently extract circular cpDNA from crops and construct a high-quality cpDNA library. The protocol combines the in-situ chloroplast lysis for the high-purity circular cpDNA with the in-situ substitute/ligation for the high-quality cpDNA library. Individually, a series of original buffers/solutions and optimized procedures for chloroplast lysis in-situ is different than bacterial lysis in-situ; the in-situ substitute/ligation that reacts on the MCE membrane is suitable for constructing the goal-insert, ordered cpDNA library while preventing the large-insert cpDNA fragment breakage. The goal-insert, ordered cpDNA library is arrayed on the microtiter plate by three colonies with the definite cpDNA fragment that are homologous-corresponds to the whole circular cpDNA of the chloroplast. CONCLUSION: The novel in-situ-process technique amply furtherance of research in genome-wide functional analysis and characterization of chloroplasts, such as genome sequencing, bioinformatics analysis, cloning, physical mapping, molecular phylogeny and evolution.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA