Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Bioprocess Biosyst Eng ; 43(5): 909-918, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31989256

RESUMEN

Bacteria have evolved a defense system to resist external stressors, such as heat, pH, and salt, so as to facilitate survival in changing or harsh environments. However, the specific mechanisms by which bacteria respond to such environmental changes are not completely elucidated. Here, we used halotolerant bacteria as a model to understand the mechanism conferring high tolerance to NaCl. We screened for genes related to halotolerance in Halomonas socia, which can provide guidance for practical application. Phospholipid fatty acid analysis showed that H. socia cultured under high osmotic pressure produced a high portion of cyclopropane fatty acid derivatives, encoded by the cyclopropane-fatty acid-acyl phospholipid synthase gene (cfa). Therefore, H. socia cfa was cloned and introduced into Escherichia coli for expression. The cfa-overexpressing E. coli strain showed better growth, compared with the control strain under normal cultivation condition as well as under osmotic pressure (> 3% salinity). Moreover, the cfa-overexpressing E. coli strain showed 1.58-, 1.78-, 3.3-, and 2.19-fold higher growth than the control strain in the presence of the inhibitors furfural, 4-hydroxybenzaldehyde, vanillin, and acetate from lignocellulosic biomass pretreatment, respectively. From a practical application perspective, cfa was co-expressed in E. coli with the polyhydroxyalkanoate (PHA) synthetic operon of Ralstonia eutropha using synthetic and biosugar media, resulting in a 1.5-fold higher in PHA production than that of the control strain. Overall, this study demonstrates the potential of the cfa gene to boost cell growth and production even in heterologous strains under stress conditions.


Asunto(s)
Proteínas Bacterianas , Escherichia coli , Expresión Génica , Metiltransferasas , Microorganismos Modificados Genéticamente , Presión Osmótica/efectos de los fármacos , Cloruro de Sodio/farmacología , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/genética , Cupriavidus necator/enzimología , Cupriavidus necator/genética , Escherichia coli/enzimología , Escherichia coli/genética , Halomonas/enzimología , Halomonas/genética , Metiltransferasas/biosíntesis , Metiltransferasas/genética , Microorganismos Modificados Genéticamente/enzimología , Microorganismos Modificados Genéticamente/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética
2.
Polymers (Basel) ; 11(3)2019 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-30960493

RESUMEN

Polyhydroxyalkanoate (PHA) is a potential substitute for petroleum-based plastics and can be produced by many microorganisms, including recombinant Escherichia coli. For efficient conversion of substrates and maximum PHA production, we performed multiple engineering of branched pathways in E. coli. We deleted four genes (pflb, ldhA, adhE, and fnr), which contributed to the formation of byproducts, using the CRISPR/Cas9 system and overexpressed pntAB, which catalyzes the interconversion of NADH and NADPH. The constructed strain, HR002, showed accumulation of acetyl-CoA and decreased levels of byproducts, resulting in dramatic increases in cell growth and PHA content. Thus, we demonstrated the effects of multiple engineering for redirecting carbon flux into PHA production without any concerns regarding simultaneous deletion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA