Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 26(3): 2168-2174, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38132888

RESUMEN

In this work, we report the effectively enhanced tunneling electroresistance effect in Au/(SrTiO3)2/(BaTiO3)4/(CaTiO3)2/Nb:SrTiO3 superlattice ferroelectric tunnel junction (FTJ). The stable polarization switching and enhanced ferroelectricity were achieved in the nanoscale thickness high-quality epitaxial superlattice. A high ON/OFF current ratio of more than 105 was obtained at room temperature, which is an order of magnitude larger than the BaTiO3 FTJ with the same structure. Nonvolatile resistance switching controlled by nonvolatile polarization switching was observed in the superlattice FTJ. Driven by increased polarization and intrinsic asymmetric ferroelectricity, a highly asymmetric depolarization field is generated compared with the Au/BaTiO3/Nb:SrTiO3 FTJ, resulting in an enhanced tunneling electroresistance effect. These results provide a potential way to construct FTJ memory devices by constructing asymmetric three-component ferroelectric superlattices.

2.
Opt Express ; 31(15): 25298-25306, 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37475338

RESUMEN

Double perovskites without lead element have attracted great attention in recent years. Further increasing the photoluminescence quantum yield of lead-free double perovskites is necessary for their potential applications. In this work, Na+ doped Cs2SnI6 nanocrystals were synthesized by hot injection method. It was displayed that all the NCs have uniform hexagonal shape with good crystallization. Energy dispersing spectroscopy and X-ray photoelectron spectroscopy proves the Na+ ions were doped in the lattice of perovskite structure. The photoluminescence intensity of doped NCs is increased by 2.7-fold than that of pure NCs. A maximum photoluminescence quantum yield of 72% is obtained. The luminous mechanism was investigated by femtosecond transient absorption spectrum and a self-trap emission was proved by the observation of ground state bleaching and photo-induced absorption signals.

3.
Phys Chem Chem Phys ; 25(22): 15279-15286, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37221999

RESUMEN

A series of asymmetric organic semiconductors based on N-shaped dibenzo[a,h]anthracene (DBA), Ph-DBA-Cn (n = 8, 10, 12), were developed. All Ph-DBA-Cn compounds had good chemical stability and smectic LC qualities, and thermally stable crystal phase can be maintained under 190 °C due to the suppressed molecular motions by the bent DBA core. High-quality crystalline films can be fabricated using a blade-coating technique. It was revealed that the average mobility of all Ph-DBA-Cn organic thin-film transistors (OTFTs) was estimated to be over 2.8 cm2 V-1 s-1, and a Ph-DBA-C8 device in particular afforded exceptional mobility of up to 11.8 cm2 V-1 s-1. The highly-ordered and uniaxially-oriented crystalline films composed of bilayer units were revealed to be responsible for their excellent electrical device performances. Furthermore, all Ph-DBA-Cn OTFTs can retain operational characteristics up to 160 °C over 1 cm2 V-1 s-1. These findings will be crucial for the development of high-mobility and thermally durable OSCs for practical electronics.

4.
Appl Opt ; 60(30): 9530-9534, 2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34807096

RESUMEN

In this paper, we demonstrate an intensity-tunable THz bandpass filter by introducing liquid crystal (LC) integrated with asymmetric frequency selective surface (FSS) and subwavelength metal gratings. Here, the tunable THz filter is derived from the inner polarization state conversion in composited devices, and the incident linear polarization can be converted into 90° orthogonal components. By controlling the LC orientation under the applied electric field with the metamaterial electrodes, the polarization conversion process can be actively modulated; thus, the polarization-dependent and tunable THz bandpass filter is achieved. Based on the multilayer design and the inner Fabry-Perot-like resonance mechanism, the LC-integrated metamaterials filter presents better filtering performance than the single FSS filter, and the Q-value is improved from 7.7 to 13.8 at the working frequency. Our simulated work paves the way for the design of new and efficient THz filters.

5.
J Org Chem ; 78(10): 4857-66, 2013 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-23600443

RESUMEN

A series of dibenzocoronene tetracarboxdiimide derivatives decorated with alkyl swallow-tail and alkoxy moieties were synthesized, and their structures were characterized. 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) as an effective oxidant was first used in the benzannulation of perylene diimides with the almost quantitative yield. The thermotropic behavior was investigated using differential scanning calorimetry (DSC) and polarization optical microscopy (POM). The introduction of alkyl swallow-tail and alkoxy substituents facilitates thermotropic liquid crystalline behavior. The branching site of alkyl swallow-tail units at the α position and the longer alkoxy chains played a similar role in lowering the mesophase transition as well as isotropization transition temperatures. The UV-vis absorption spectra of all compounds appeared as absorption in 425-600 nm region, and POM images of certain compounds exhibited characteristic columnar hexagonal (Col(h)) packing and readily self-assembled into a homeotropic alignment toward the substrate.


Asunto(s)
Imidas/química , Imidas/síntesis química , Perileno/análogos & derivados , Temperatura , Estructura Molecular , Perileno/síntesis química , Perileno/química , Procesos Fotoquímicos
6.
ACS Nano ; 13(6): 6618-6630, 2019 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-31082195

RESUMEN

Thin-film transistors (TFTs) and field-effect transistors (FETs) are basic units to build functional electronic circuits and investigate transport physics. In conventional TFTs or FETs, performance in terms of current level, on-off ratio, and the sensitivity of detection is limited by homogeneous semiconducting layers. In this paper, we develop TFTs with submicron heterostructures by using a strategy based on near-field photolithography. We use an array of total-reflective polydimethylsiloxane pyramids or trenches as a soft photomask in photolithography to induce multiple reflections and diffractions to focus the light. The textured feature enables the generation of gaps, dots, and grids at the nanoscale, with dimensions as small as sub-100 nm on substrates at the centimeter scale. We demonstrated the very high performance oxide TFTs on the nanoscale and periodic degenerately doped heterojunctions, and they yielded a nearly 20-fold increase in transconductance and apparent device mobility. The on-off ratio was higher than 109, with notably enhanced output current and clear scaling effect with channel length. We also built nanostructured wide-gap/narrow-gap heterojunctions to balance the high on-off ratio and sensitive photoresponse in a unidirectional phototransistor. This study shows the viability of programming a variety of nanoscale submicron patterns or interfaces in TFTs and FETs to significantly enlarge the scope of research on multifunctional TFTs and FETs.

7.
ACS Appl Mater Interfaces ; 11(7): 7226-7234, 2019 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-30693755

RESUMEN

We developed a facile method for fabricating large-area, two-dimensional (2D), organic, highly crystalline films and extended it to organic thin-film transistor arrays. Tilted spinning provided oriented flow at the three-phase contact line, and a 2D crystalline film that consisted of layer-by-layer stacked 2,7-diocty[1]benzothieno[3,2- b]benzothiophene (C8-BTBT) was obtained facilely for organic thin-film transistors (OTFTs). The extracted field-effect mobility is 4.6 cm2 V-1 s-1, but with nonideal features. By applying this method to microdroplet arrays, an oriented crystal was fabricated, and the channel region for OTFTs was covered by adjusting the spinning speed. By tuning the tilt angle (θ) of the revolving substrate, we fabricated high-performance OTFT arrays with average and maximum mobilities of 7.5 and 10.1 cm2 V-1 s-1, respectively, which exhibited high reliability factors of over 90% and were close to that of ideal transistors. These results suggest that high-quality crystalline films can be obtained via a facile tilted-spinning method.

8.
ACS Appl Mater Interfaces ; 10(46): 39921-39932, 2018 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-30353719

RESUMEN

The crystallization of organic or perovskite semiconductors reflects the intermolecular interactions and crucially determines the charge transport in opto-electronic devices. In this report, we demonstrate and investigate the use of an ultrasonicated dispenser to guide the formation of crystals of organic and perovskite semiconductors. The moving speed of the dispenser affects the match between the concentration gradient and evaporation rate near the three-phase contact lines and thus the generation of various crystallization morphologies. The mechanism of crystallization is given by a relationship between the calculated concentration gradient profile and the degree of crystal alignment. Highly ordered, aligned crystals are achieved for both organic bis(triisopropylsilylethynyl)-pentacene and perovskite MAPbI3 semiconductors. Absorption spectra, Raman scattering spectroscopy analysis, and grazing incidence wide-angle X-ray scattering measurement reveal the strong anisotropy of the crystalline structures. The aligned crystals lead to remarkably enhanced electrical performances in an organic thin-film transistor (OTFT) and perovskite photodetector. As a demonstration, we combine the OTFT with photodetectors to achieve an active matrix of normally off, gate-tunable photodetectors that operate under ambient conditions.

9.
ACS Appl Mater Interfaces ; 10(22): 19097-19105, 2018 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-29798672

RESUMEN

An ultrastretchable thermistor that combines intrinsic stretchability, thermal sensitivity, transparency, and self-healing capability is fabricated. It is found the polyacrylamide/carrageenan double network (DN) hydrogel is highly sensitive to temperature and therefore can be exploited as a novel channel material for a thermistor. This thermistor can be stretched from 0 to 330% strain with the sensitivity as high as 2.6%/°C at extreme 200% strain. Noticeably, the mechanical, electrical, and thermal sensing properties of the DN hydrogel can be self-healed, analogous to the self-healing capability of human skin. The large mechanical deformations, such as flexion and twist with large angles, do not affect the thermal sensitivity. Good flexibility enables the thermistor to be attached on nonplanar curvilinear surfaces for practical temperature detection. Remarkably, the thermal sensitivity can be improved by introducing mechanical strain, making the sensitivity programmable. This thermistor with tunable sensitivity is advantageous over traditional rigid thermistors that lack flexibility in adjusting their sensitivity. In addition to superior sensitivity and stretchability compared with traditional thermistors, this DN hydrogel-based thermistor provides additional advantages of good transparency and self-healing ability, enabling it to be potentially integrated in soft robots to grasp real world information for guiding their actions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA