Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Immunology ; 173(4): 672-688, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39183579

RESUMEN

Hypoxia plays an important role in the metastasis of hepatocellular carcinoma (HCC). Exosomes have been widely studied as mediators of communication between tumours and immune cells. However, the specific mechanism by which hypoxic HCC cell-derived exosomes suppress antitumor immunity is unclear. Hypoxia scores were determined for The Cancer Genome-Liver Hepatocellular Carcinoma (TCGA-LIHC) dataset patients, and HCC patients in the hyperhypoxic group had a higher degree of M2 macrophage infiltration. Patients in the M2 high-invasion group had a lower probability of survival than those in the low-invasion group. In vivo and in vitro experiments demonstrated that exosomes secreted by hypoxic HCC cells promote M2 macrophage polarization. This polarization induces apoptosis in CD8+ T cells. Additionally, it encourages epithelial-mesenchymal transition (EMT), which increases HCC migration. Exosomal miRNA sequencing revealed that miR-1290 was highly expressed in exosomes secreted by hypoxic HCC cells. Mechanistically, miR-1290 in macrophages inhibited Akt2 while upregulating PD-L1 to promote M2 polarization, induce apoptosis in CD8+ T cells, and enhance EMT in HCC. Animal studies found that the miR-1290 antagomir in combination with the immune checkpoint inhibitor produced better antitumor effects than the monotherapies. In conclusion, the secretion of exosome-derived miR-1290 from HCC cells in a hypoxic environment supported immune escape by HCC cells by promoting M2 macrophage polarization to induce apoptosis in CD8+ T cells and enhance EMT that promoted HCC metastasis. Therefore, miR-1290 is an important molecule in antitumor immunity in HCC, and inhibition of miR-1290 could provide a novel immunotherapeutic approach for HCC treatment.


Asunto(s)
Linfocitos T CD8-positivos , Carcinoma Hepatocelular , Transición Epitelial-Mesenquimal , Exosomas , Neoplasias Hepáticas , Macrófagos , MicroARNs , MicroARNs/genética , MicroARNs/metabolismo , Exosomas/metabolismo , Exosomas/inmunología , Humanos , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Carcinoma Hepatocelular/inmunología , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/metabolismo , Animales , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Línea Celular Tumoral , Transición Epitelial-Mesenquimal/inmunología , Apoptosis , Microambiente Tumoral/inmunología , Activación de Macrófagos , Regulación Neoplásica de la Expresión Génica , Masculino , Escape del Tumor , Hipoxia Tumoral , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética
2.
BMC Cancer ; 22(1): 379, 2022 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-35397536

RESUMEN

BACKGROUND: The combined application of immune cells and specific biomarkers related to the tumor immune microenvironment has a better predictive value for the prognosis of HCC. The purpose of this study is to construct a new prognostic model based on immune-related genes that regulate cross-talk between immune and tumor cells to assess the prognosis and explore possible mechanisms. METHOD: The immune cell abundance ratio of 424 cases in the TCGA-LIHC database is obtained through the CIBERSORT algorithm. The differential gene analysis and cox regression analysis is used to screen IRGs. In addition, the function of IRGs was preliminarily explored through the co-culture of M2 macrophages and HCC cell lines. The clinical validation, nomogram establishment and performing tumor microenvironment score were validated. RESULTS: We identified 4 immune cells and 9 hub genes related to the prognosis. Further, we identified S100A9, CD79B, TNFRSF11B as an IRGs signature, which is verified in the ICGC and GSE76427 database. Importantly, IRGs signature is closely related to the prognosis, tumor microenvironment score, clinical characteristics and immunotherapy, and nomogram combined with clinical characteristics is more conducive to clinical promotion. In addition, after co-culture with M2 macrophages, the migration capacity and cell pseudopod of MHCC97H increased significantly. And CD79B and TNFRSF11B were significantly down-regulated in MHCC97H, Huh7 and LM3, while S100A9 was up-regulated. CONCLUSION: We constructed an IRGs signature and discussed possible mechanisms. The nomogram established based on IRGs can accurately predict the prognosis of HCC patients. These findings may provide a suitable therapeutic target for HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Biomarcadores de Tumor/genética , Carcinoma Hepatocelular/patología , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Hepáticas/patología , Nomogramas , Pronóstico , Microambiente Tumoral/genética
3.
NPJ Precis Oncol ; 8(1): 58, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429411

RESUMEN

Abnormal lipid metabolism promotes hepatocellular carcinoma (HCC) progression, which engenders therapeutic difficulties owing to unclear mechanisms of the phenomenon. We precisely described a special steatotic HCC subtype with HBV-related cirrhosis and probed its drivers. Hematoxylin-eosin (HE) staining of 245 HCC samples revealed a special HCC subtype (41 cases) characterized by HBV-related cirrhosis and intratumoral steatosis without fatty liver background, defined as steatotic HCC with HBV-related cirrhosis (SBC-HCC). SBC-HCC exhibits a larger tumor volume and worse prognosis than non-SBC-HCC. Screening for driver genes promoting fatty acid (FA) biosynthesis in the Gao's HBV-related cirrhosis HCC cases and GSE121248' HBV-related HCC cases revealed that high expression of SOCS5 predicts increased FA synthesis and that SOCS5 is upregulated in SBC-HCC. Through proteomics, metabolomics, and both in vivo and in vitro experiments, we demonstrated that SOCS5 induces lipid accumulation to promote HCC metastasis. Mechanistically, through co-IP and GST-pulldown experiments, we found that the SOCS5-SH2 domain, especially the amino acids Y413 and D443, act as critical binding sites for the RBMX-RRM domain. SOCS5-RBMX costimulates the promoter of SREBP1, inducing de novo lipogenesis, while mutations in the SH2 domain, Y413, and D443 reverse this effect. These findings precisely identified SBC-HCC as a special steatotic HCC subtype and highlighted a new mechanism by which SOCS5 promotes SBC-HCC metastasis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA