Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros

Intervalo de año de publicación
1.
Org Biomol Chem ; 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39189805

RESUMEN

Axially chiral C2-arylquinoline has been successfully constructed via asymmetric heteroannulation of alkynes catalyzed by chiral phosphoric acid with high yield and high enantioselectivity. Inspired by this intriguing work, theoretical calculations have been carried out, and the detailed reaction mechanism has been elaborated, in which the whole reaction can be divided into steps including hydrogen transfer, C-N bonding, annulation reaction and the final dehydration processes. The initial hydrogen-transfer reaction has two possible pathways, while the subsequent C-N bonding process has eight possible pathways. Then, after the annulation reaction and the final dehydration processes, the major product and byproduct were formed. QTAIM and IGMH analyses were used to illustrate the role of weak intermolecular interactions in the catalytic process, and the distortion/interaction and EDA analyses provided a deeper understanding of the origin of enantioselectivity. The calculated results are consistent with the experimental results. This work would provide valuable insights into asymmetric reactions catalyzed by chiral phosphoric acid.

2.
J Biol Chem ; 298(2): 101580, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35031320

RESUMEN

The potential antimicrobial compound Chuangxinmycin (CXM) targets the tryptophanyl-tRNA synthetase (TrpRS) of both Gram-negative and Gram-positive bacteria. However, the specific steric recognition mode and interaction mechanism between CXM and TrpRS is unclear. Here, we studied this interaction using recombinant GsTrpRS from Geobacillus stearothermophilus by X-ray crystallography and molecular dynamics (MD) simulations. The crystal structure of the recombinant GsTrpRS in complex with CXM was experimentally determined to a resolution at 2.06 Å. After analysis using a complex-structure probe, MD simulations, and site-directed mutation verification through isothermal titration calorimetry, the interaction between CXM and GsTrpRS was determined to involve the key residues M129, D132, I133, and V141 of GsTrpRS. We further evaluated binding affinities between GsTrpRS WT/mutants and CXM; GsTrpRS was found to bind CXM through hydrogen bonds with D132 and hydrophobic interactions between the lipophilic tricyclic ring of CXM and M129, I133, and V141 in the substrate-binding pockets. This study elucidates the precise interaction mechanism between CXM and its target GsTrpRS at the molecular level and provides a theoretical foundation and guidance for the screening and rational design of more effective CXM analogs against both Gram-negative and Gram-positive bacteria.


Asunto(s)
Geobacillus stearothermophilus , Indoles , Triptófano-ARNt Ligasa , Antibacterianos/farmacología , Cristalografía por Rayos X , Geobacillus stearothermophilus/efectos de los fármacos , Geobacillus stearothermophilus/enzimología , Indoles/farmacología , Triptófano-ARNt Ligasa/metabolismo
3.
Protein Expr Purif ; 187: 105943, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34273542

RESUMEN

Alcohol dehydrogenase 1 identified from Artemisia annua (AaADH1) is a 40 kDa protein that predominately expressed in young leaves and buds, and catalyzes dehydrogenation of artemisinic alcohol to artemisinic aldehyde in artemisinin biosynthetic pathway. In this study, AaADH1 encoding gene was subcloned into vector pET-21a(+) and expressed in Escherichia coli. BL21(DE3), and purified by Co2+ affinity chromatography. Anion exchange chromatography was performed until the protein purity reached more than 90%. Crystallization of AaADH1 was conducted for further investigation of the molecular mechanism of catalysis, and hanging-drop vapour diffusion method was used in experiments. The results showed that the apo AaADH1 crystal diffracted to 2.95 Å resolution, and belongs to space group P1, with unit-cell parameters, a = 77.53 Å, b = 78.49 Å, c = 102.44 Å, α = 71.88°, ß = 74.02°, γ = 59.97°. The crystallization condition consists of 0.1 M Bis-Tris pH 6.0, 13% (w/v) PEG 8000 and 5% (v/v) glycerol.


Asunto(s)
Alcohol Deshidrogenasa/química , Alcohol Deshidrogenasa/genética , Artemisia annua/enzimología , Artemisininas/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Aldehídos/química , Artemisia annua/genética , Vías Biosintéticas , Cromatografía de Afinidad , Cristalografía por Rayos X , Activación Enzimática , Escherichia coli
4.
Proc Natl Acad Sci U S A ; 115(5): 974-979, 2018 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-29343643

RESUMEN

Capuramycins are antimycobacterial antibiotics that consist of a modified nucleoside named uridine-5'-carboxamide (CarU). Previous biochemical studies have revealed that CarU is derived from UMP, which is first converted to uridine-5'-aldehyde in a reaction catalyzed by the dioxygenase CapA and subsequently to 5'-C-glycyluridine (GlyU), an unusual ß-hydroxy-α-amino acid, in a reaction catalyzed by the pyridoxal-5'-phosphate (PLP)-dependent transaldolase CapH. The remaining steps that are necessary to furnish CarU include decarboxylation, O atom insertion, and oxidation. We demonstrate that Cap15, which has sequence similarity to proteins annotated as bacterial, PLP-dependent l-seryl-tRNA(Sec) selenium transferases, is the sole catalyst responsible for complete conversion of GlyU to CarU. Using a complementary panel of in vitro assays, Cap15 is shown to be dependent upon substrates O2 and (5'S,6'R)-GlyU, the latter of which was unexpected given that (5'S,6'S)-GlyU is the isomeric product of the transaldolase CapH. The two products of Cap15 are identified as the carboxamide-containing CarU and CO2 While known enzymes that catalyze this type of chemistry, namely α-amino acid 2-monooxygenase, utilize flavin adenine dinucleotide as the redox cofactor, Cap15 remarkably requires only PLP. Furthermore, Cap15 does not produce hydrogen peroxide and is shown to directly incorporate a single O atom from O2 into the product CarU and thus is an authentic PLP-dependent monooxygenase. In addition to these unusual discoveries, Cap15 activity is revealed to be dependent upon the inclusion of phosphate. The biochemical characteristics along with initiatory mechanistic studies of Cap15 are reported, which has allowed us to assign Cap15 as a PLP-dependent (5'S,6'R)-GlyU:O2 monooxygenase-decarboxylase.


Asunto(s)
Oxigenasas/metabolismo , Fosfato de Piridoxal/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Aminoglicósidos/química , Aminoglicósidos/metabolismo , Antibacterianos/química , Antibacterianos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Coenzimas/metabolismo , Genes Bacterianos , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Oxigenasas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido
5.
Molecules ; 26(5)2021 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-33800069

RESUMEN

New drugs with novel antibacterial targets for Gram-negative bacterial pathogens are desperately needed. The protein LpxC is a vital enzyme for the biosynthesis of lipid A, an outer membrane component of Gram-negative bacterial pathogens. The ACHN-975 molecule has high enzymatic inhibitory capacity against the infectious diseases, which are caused by multidrug-resistant bacteria, but clinical research was halted because of its inflammatory response in previous studies. In this work, the structure of the recombinant UDP-3-O-(R-3-hydroxymyristol)-N-acetylglucosamine deacetylase from Aquifex aeolicus in complex with ACHN-975 was determined to a resolution at 1.21 Å. According to the solved complex structure, ACHN-975 was docked into the AaLpxC's active site, which occupied the site of AaLpxC substrate. Hydroxamate group of ACHN-975 forms five-valenced coordination with resides His74, His226, Asp230, and the long chain part of ACHN-975 containing the rigid alkynyl groups docked in further to interact with the hydrophobic area of AaLpxC. We employed isothermal titration calorimetry for the measurement of affinity between AaLpxC mutants and ACHN-975, and the results manifest the key residues (His74, Thr179, Tyr212, His226, Asp230 and His253) for interaction. The determined AaLpxC crystal structure in complex with ACHN-975 is expected to serve as a guidance and basis for the design and optimization of molecular structures of ACHN-975 analogues to develop novel drug candidates against Gram-negative bacteria.


Asunto(s)
Amidohidrolasas/química , Amidohidrolasas/metabolismo , Antibacterianos/química , Benzamidas/química , Bacterias Gramnegativas/efectos de los fármacos , Amidohidrolasas/genética , Antibacterianos/farmacología , Aquifex/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Benzamidas/farmacología , Sitios de Unión , Calorimetría , Cristalografía por Rayos X , Conformación Proteica , Termodinámica
6.
Molecules ; 24(3)2019 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-30691073

RESUMEN

Mycobacterium tuberculosis (Mtb) has recently surpassed HIV/AIDS as the leading cause of death by a single infectious agent. The standard therapeutic regimen against tuberculosis (TB) remains a long, expensive process involving a multidrug regimen, and the prominence of multidrug-resistant (MDR), extensively drug-resistant (XDR), and totally drug-resistant (TDR) strains continues to impede treatment success. An underexplored class of natural products-the capuramycin-type nucleoside antibiotics-have been shown to have potent anti-TB activity by inhibiting bacterial translocase I, a ubiquitous and essential enzyme that functions in peptidoglycan biosynthesis. The present review discusses current literature concerning the biosynthesis and chemical synthesis of capuramycin and analogs, seeking to highlight the potential of the capuramycin scaffold as a favorable anti-TB therapeutic that warrants further development.


Asunto(s)
Aminoglicósidos/biosíntesis , Aminoglicósidos/síntesis química , Antituberculosos/síntesis química , Aminoglicósidos/farmacología , Antituberculosos/metabolismo , Antituberculosos/farmacología , Bacterias/genética , Bacterias/metabolismo , Biocatálisis , Productos Biológicos/síntesis química , Productos Biológicos/metabolismo , Productos Biológicos/farmacología , Descubrimiento de Drogas , Humanos , Redes y Vías Metabólicas , Familia de Multigenes , Mycobacterium tuberculosis/efectos de los fármacos , Relación Estructura-Actividad
7.
Molecules ; 24(22)2019 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-31717501

RESUMEN

Human carboxylesterase 1 (hCES1) is a major carboxylesterase in the human body and plays important roles in the metabolism of a wide variety of substances, including lipids and drugs, and therefore is attracting more and more attention from areas including lipid metabolism, pharmacokinetics, drug-drug interactions, and prodrug activation. In this work, we studied the catalytic hydrolysis mechanism of hCES1 by the quantum mechanics computation method, using cocaine as a model substrate. Our results support the four-step theory of the esterase catalytic hydrolysis mechanism, in which both the acylation stage and the deacylation stage include two transition states and a tetrahedral intermediate. The roles and cooperation of the catalytic triad, S221, H468, and E354, were also analyzed in this study. Moreover, orthoester intermediates were found in hCES1-catalyzed cocaine hydrolysis reaction, which significantly elevate the free energy barrier and slow down the reaction. Based on this finding, we propose that hCES1 substrates with ß-aminocarboxylester structure might form orthoester intermediates in hCES1-catalyzed hydrolysis, and therefore prolong their in vivo half-life. Thus, this study helps to clarify the catalytic mechanism of hCES1 and elucidates important details of its catalytic process, and furthermore, provides important insights into the metabolism of hCES1 substrates and drug designing.


Asunto(s)
Hidrolasas de Éster Carboxílico/metabolismo , Cocaína/metabolismo , Catálisis , Humanos , Hidrólisis , Cinética
8.
Yao Xue Xue Bao ; 52(3): 362-70, 2017 Mar.
Artículo en Zh | MEDLINE | ID: mdl-29979555

RESUMEN

In recent years, owing to the abuse of antibiotics, the widespread of resistant bacterial strains became a serious threat to public health. This status demands development of new antibacterial agents with novel mechanisms of action. The reason for the limited new antibacterials is the small number of effective therapeutic targets, which cannot meet the current needs for the multiple drug-resistant treatment. Screening for new targets is the key step in the development of novel antibacterial agents. Peptidoglycan is the main component of the cell wall of bacteria, which is essential for survival of pathogenic bacteria. Within the biochemical pathway for peptidoglycan biosynthes is the Murligases, described in this review as highly potential targets for the development of new classes of antibacterial agents. This review provides an in-depth insight into the recent developments in the field of inhibitors of the Mur enzymes (MurA-F). Moreover, the reasons for the lack of candidate inhibitors and the challenges to overcome the hurdles are also discussed.


Asunto(s)
Antibacterianos/farmacología , Bacterias/enzimología , Proteínas Bacterianas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Peptidoglicano/biosíntesis , Pared Celular , Farmacorresistencia Bacteriana
9.
J Biol Chem ; 290(22): 13710-24, 2015 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-25855790

RESUMEN

A-500359s, A-503083s, and A-102395 are capuramycin-type nucleoside antibiotics that were discovered using a screen to identify inhibitors of bacterial translocase I, an essential enzyme in peptidoglycan cell wall biosynthesis. Like the parent capuramycin, A-500359s and A-503083s consist of three structural components: a uridine-5'-carboxamide (CarU), a rare unsaturated hexuronic acid, and an aminocaprolactam, the last of which is substituted by an unusual arylamine-containing polyamide in A-102395. The biosynthetic gene clusters for A-500359s and A-503083s have been reported, and two genes encoding a putative non-heme Fe(II)-dependent α-ketoglutarate:UMP dioxygenase and an l-Thr:uridine-5'-aldehyde transaldolase were uncovered, suggesting that C-C bond formation during assembly of the high carbon (C6) sugar backbone of CarU proceeds from the precursors UMP and l-Thr to form 5'-C-glycyluridine (C7) as a biosynthetic intermediate. Here, isotopic enrichment studies with the producer of A-503083s were used to indeed establish l-Thr as the direct source of the carboxamide of CarU. With this knowledge, the A-102395 gene cluster was subsequently cloned and characterized. A genetic system in the A-102395-producing strain was developed, permitting the inactivation of several genes, including those encoding the dioxygenase (cpr19) and transaldolase (cpr25), which abolished the production of A-102395, thus confirming their role in biosynthesis. Heterologous production of recombinant Cpr19 and CapK, the transaldolase homolog involved in A-503083 biosynthesis, confirmed their expected function. Finally, a phosphotransferase (Cpr17) conferring self-resistance was functionally characterized. The results provide the opportunity to use comparative genomics along with in vivo and in vitro approaches to probe the biosynthetic mechanism of these intriguing structures.


Asunto(s)
Aminoglicósidos/biosíntesis , Aminoglicósidos/genética , Antibacterianos/biosíntesis , Farmacorresistencia Bacteriana , Familia de Multigenes , Uridina/análogos & derivados , Uridina/química , Aminoglicósidos/química , Antibacterianos/química , Secuencia de Bases , Diseño de Fármacos , Escherichia coli/metabolismo , Hemo/química , Cinética , Espectroscopía de Resonancia Magnética , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Fosforilación , Reacción en Cadena de la Polimerasa , Unión Proteica , Proteínas Recombinantes/química , Streptomyces/metabolismo , Treonina/química , Transaldolasa/metabolismo , Uridina/biosíntesis , Uridina Monofosfato/química
10.
Chembiochem ; 17(9): 804-10, 2016 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-26840634

RESUMEN

Capuramycins are one of several known classes of natural products that contain an l-Lys-derived l-α-amino-ɛ-caprolactam (l-ACL) unit. The α-amino group of l-ACL in a capuramycin is linked to an unsaturated hexuronic acid component through an amide bond that was previously shown to originate by an ATP-independent enzymatic route. With the aid of a combined in vivo and in vitro approach, a predicted tridomain nonribosomal peptide synthetase CapU is functionally characterized here as the ATP-dependent amide-bond-forming catalyst responsible for the biosynthesis of the remaining amide bond present in l-ACL. The results are consistent with the adenylation domain of CapU as the essential catalytic component for l-Lys activation and thioesterification of the adjacent thiolation domain. However, in contrast to expectations, lactamization does not require any additional domains or proteins and is likely a nonenzymatic event. The results set the stage for examining whether a similar NRPS-mediated mechanism is employed in the biosynthesis of other l-ACL-containing natural products and, just as intriguingly, how spontaneous lactamization is avoided in the numerous NRPS-derived peptides that contain an unmodified l-Lys residue.


Asunto(s)
Aminoglicósidos/biosíntesis , Lisina/metabolismo , Péptido Sintasas/metabolismo , Aminoglicósidos/química , Caprolactama/química , Caprolactama/metabolismo , Cromatografía Líquida de Alta Presión , Péptido Sintasas/genética , Streptomyces/enzimología , Streptomyces/genética
11.
Org Biomol Chem ; 14(16): 3956-62, 2016 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-27050157

RESUMEN

Using the ATP-independent transacylase CapW required for the biosynthesis of capuramycin-type antibiotics, we developed a biocatalytic approach for the synthesis of 43 analogues via a one-step aminolysis reaction from a methyl ester precursor as an acyl donor and various nonnative amines as acyl acceptors. Further examination of the donor substrate scope for CapW revealed that this enzyme can also catalyze a direct transamidation reaction using the major capuramycin congener as a semisynthetic precursor. Biological activity tests revealed that a few of the new capuramycin analogues have significantly improved antibiotic activity against Mycobacterium smegmatis MC2 155 and Mycobacterium tuberculosis H37Rv. Furthermore, most of the analogues are able to be covalently modified by the phosphotransferase CapP/Cpr17 involved in self resistance, providing critical insight for future studies regarding clinical development of the capuramycin antimycobacterial antibiotics.


Asunto(s)
Aciltransferasas/metabolismo , Aminoglicósidos/química , Aminoglicósidos/farmacología , Biocatálisis , Pruebas de Sensibilidad Microbiana , Mycobacterium smegmatis/efectos de los fármacos , Especificidad por Sustrato
12.
J Asian Nat Prod Res ; 18(8): 752-64, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26988280

RESUMEN

Thiazinogeldanamycin (2) was identified from Streptomyces hygroscopicus 17997 at the late stage of the fermentation. The pH was firstly proposed as an important factor in the biosynthesis of it. It was verified that 2 was produced by direct chemical reactions between geldanamycin (1, GDM) and cysteine or aminoethanethiol hydrochloride at pH > 7 in vitro. The proposed synthesis pathway for compound 2 was also discussed. Eleven new C-19-modified GDM derivatives, including five stable hydroquinone form derivatives, were synthesized, most of which exhibited desirable properties such as lower cytotoxicity, increased water solubility, and potent antitumor activity. Especially, compounds 5 and 8 showed antitumor activities against HepG2 cell with IC50 values of 2.97-6.61 µM, lower cytotoxicity and at least 15-fold higher water solubility compared with 1 in pH 7.0 phosphate buffer.


Asunto(s)
Antineoplásicos , Benzoquinonas , Hidroquinonas/síntesis química , Lactamas Macrocíclicas , Streptomyces/química , Antineoplásicos/síntesis química , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Antineoplásicos/farmacología , Benzoquinonas/síntesis química , Benzoquinonas/química , Benzoquinonas/aislamiento & purificación , Benzoquinonas/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Células Hep G2 , Humanos , Concentración de Iones de Hidrógeno , Hidroquinonas/química , Concentración 50 Inhibidora , Lactamas Macrocíclicas/síntesis química , Lactamas Macrocíclicas/química , Lactamas Macrocíclicas/aislamiento & purificación , Lactamas Macrocíclicas/farmacología , Estructura Molecular , Resonancia Magnética Nuclear Biomolecular , Solubilidad
13.
J Nat Prod ; 78(9): 2260-5, 2015 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-26317881

RESUMEN

Saccharothrixones A-C (1-3), three new aromatic polyketide seco-tetracenomycins, and saccharothrixone D (4), a new tetracenomycin analogue possessing opposite configurations at all of the stereogenic centers, were isolated from the marine-derived actinomycete Saccharothrix sp. 10-10. Compounds 1-3 represent the first examples of seco-tetracenomycins where the quinone ring B is cleaved and re-formed into a furanone ring. Their structures were elucidated by spectroscopic analyses and ECD calculations. The absolute configuration of 4 was confirmed by single-crystal X-ray diffraction analysis. Saccharothrixone D (4) showed in vitro cytotoxic activity against the HepG2 cancer cell line with an IC50 value of 7.5 µM.


Asunto(s)
Actinomycetales/química , Policétidos/aislamiento & purificación , Humanos , Estructura Molecular , Naftacenos , Policétidos/química
14.
Yao Xue Xue Bao ; 49(2): 230-6, 2014 Feb.
Artículo en Zh | MEDLINE | ID: mdl-24761614

RESUMEN

The crude extracts of the fermentation broth from a marine sediment-derived actinomycete strain, Saccharothrix sp. 10-10, showed significant antibacterial activities against drug-resistant pathogens. A genome-mining PCR-based experiment targeting the genes encoding key enzymes involved in the biosynthesis of secondary metabolites indicated that the strain 10-10 showed the potential to produce tetracenomycin-like compounds. Further chemical investigation of the cultures of this strain led to the identification of two antibiotics, including a tetracenomycin (Tcm) analogs, Tcm X (1), and a tomaymycin derivative, oxotomaymycin (2). Their structures were identified by spectroscopic data analysis, including UV, 1D-NMR, 2D-NMR and MS spectra. Tcm X (1) showed moderate antibacterial activities against a number of drug-resistant pathogens, including methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococci (VRE) pathogens, with the MIC values in the range of 32-64 microg x mL(-1). In addition, 1 also displayed significant cytotoxic activities against human cancer cell lines, including HL60 (leukemia), HepG2 (liver), and MCF-7 (breast) with the IC 50 values of 5.1, 9.7 and 18.0 micromol x L(-1), respectively. Guided by the PCR-based gene sequence analysis, Tcm X (1) and oxotomaymycin (2) were identified from the genus of Saccharothrix and their 13C NMR data were correctly assigned on the basis of 2D NMR spectroscopic data analysis for the first time.


Asunto(s)
Actinomycetales/química , Antibacterianos/aislamiento & purificación , Antineoplásicos/aislamiento & purificación , Actinomycetales/genética , Antibacterianos/química , Antibacterianos/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Benzodiazepinonas/química , Benzodiazepinonas/aislamiento & purificación , Benzodiazepinonas/farmacología , Línea Celular Tumoral , Minería de Datos/métodos , Farmacorresistencia Bacteriana , Enterococcus faecalis/efectos de los fármacos , Fermentación , Genómica , Humanos , Concentración 50 Inhibidora , Biología Marina , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Naftacenos/química , Naftacenos/aislamiento & purificación , Naftacenos/farmacología , Filogenia , Staphylococcus epidermidis/efectos de los fármacos
15.
J Agric Food Chem ; 72(17): 9937-9946, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38651303

RESUMEN

The engineered human cystathionine-γ-lyase (hCGL) resulting in enhanced activity toward both cysteine and cystine unveils a potential robust antitumor activity. However, the presence of cysteine residues has the potential to induce oligomerization or incorrect disulfide bonding, which may decrease the bioavailability of biopharmaceuticals. Through a meticulous design process targeting the cysteine residues within engineered hCGL, a set of potential beneficial mutants were obtained by virtual screening employing Rosetta and ABACUS. Experimental measurements have revealed that most of the mutants showed increased activity toward both substrates l-Cys and CSSC. Furthermore, mutants C109V and C229D demonstrated Tm value increases of 8.2 and 1.8 °C, respectively. After an 80 min incubation at 60 °C, mutant C229D still maintained high residual activity. Unexpectedly, mutant C109V, displaying activity approximately 2-fold higher than the activity of wild type (WT) for both substrates, showed disappointing instability in plasma, which suggests that computational design still requires further consideration. Analysis of their structure and molecular dynamics (MD) simulation revealed the impact of hydrophobic interaction, hydrogen bonds, and near-attack conformation (NAC) stability on activity and stability. This study acquired information about mutants that exhibit enhanced activity or thermal resistance and serve as valuable guidance for subsequent specific cysteine modifications.


Asunto(s)
Cistationina gamma-Liasa , Cisteína , Simulación de Dinámica Molecular , Ingeniería de Proteínas , Cisteína/química , Cisteína/metabolismo , Humanos , Cistationina gamma-Liasa/genética , Cistationina gamma-Liasa/química , Cistationina gamma-Liasa/metabolismo , Estabilidad de Enzimas , Cistina/química , Enlace de Hidrógeno , Mutación , Cinética
16.
SAGE Open Med Case Rep ; 12: 2050313X241254743, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38803362

RESUMEN

Nature killer cell therapy has shown strong efficacy in the field of oncology in recent years and has been applied to patients with metastases with the aim of improving the prognosis of advanced gastric cancer. A 59-year-old male with gastric adenocarcinoma with pancreatic metastasis (T4N0M1) who underwent radical surgery for gastric cancer with tumor metastasis was treated with oxaliplatin and tegafur combined with cellular reinfusion in stages. Computed tomograpy scan and serum tumor markers were monitored continuously after the treatment course. After five courses of combined treatment, the patient was in disease control with no significant side effects. At the last follow-up, the alpha fetoprotein had returned to its normal value with a poor display of low-density shadows in the body of the pancreas. Pancreatic cancer is insidious in origin and has a high mortality rate. The report provides clinical evidence for cell therapy of pancreatic metastatic cancer with improved quality of life.

17.
Comput Struct Biotechnol J ; 23: 982-989, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38404709

RESUMEN

The thermostable α-amylase derived from Bacillus licheniformis (BLA) has multiple advantages, including enhancing the mass transfer rate and by reducing microbial contamination in starch hydrolysis. Nonetheless, the application of BLA is constrained by the accessibility and stability of enzymes capable of achieving high conversion rates at elevated temperatures. Moreover, the thermotolerance of BLA requires further enhancement. Here, we developed a computational strategy for constructing small and smart mutant libraries to identify variants with enhanced thermostability. Initially, molecular dynamics (MD) simulations were employed to identify the regions with high flexibility. Subsequently, FoldX, a computational design predictor, was used to design mutants by rigidifying highly flexible residues, whereas the simultaneous decrease in folding free energy assisted in improving thermostability. Through the utilization of MD and FoldX, residues K251, T277, N278, K319, and E336, situated at a distance of 5 Å from the catalytic triad, were chosen for mutation. Seventeen mutants were identified and characterized by evaluating enzymatic characteristics and kinetic parameters. The catalytic efficiency of the E271L/N278K mutant reached 184.1 g L-1 s-1, which is 1.88-fold larger than the corresponding value determined for the WT. Furthermore, the most thermostable mutant, E336S, exhibited a 1.43-fold improvement in half-life at 95 â„ƒ, compared with that of the WT. This study, by combining computational simulation with experimental verification, establishes that potential sites can be computationally predicted to increase the activity and stability of BLA and thus provide a possible strategy by which to guide protein design.

18.
Int J Biol Macromol ; 262(Pt 2): 130248, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38367782

RESUMEN

Phenylalanine ammonia-lyase (PAL) has various applications in fine chemical manufacturing and the pharmaceutical industry. In particular, PAL derived from Anabaena variabilis (AvPAL) is used as a therapeutic agent to the treat phenylketonuria in clinical settings. In this study, we aligned the amino acid sequences of AvPAL and PAL derived from Nostoc punctiforme (NpPAL) to obtain several mutants with enhanced activity, expression yield, and thermal stability via amino acid substitution and saturation mutagenesis at the N-terminal position. Enzyme kinetic experiments revealed that the kcat values of NpPAL-N2K, NpPAL-I3T, and NpPAL-T4L mutants were increased to 3.2-, 2.8-, and 3.3-fold that of the wild-type, respectively. Saturation mutagenesis of the fourth amino acid in AvPAL revealed that the kcat values of AvPAL-L4N, AvPAL-L4P, AvPAL-L4Q and AvPAL-L4S increased to 4.0-, 3.7-, 3.6-, and 3.2-fold, respectively. Additionally, the soluble protein yield of AvPAL-L4K increased to approximately 14 mg/L, which is approximately 3.5-fold that of AvPAL. Molecular dynamics studies further revealed that maintaining the attacking state of the reaction and N-terminal structure increased the rate of catalytic reaction and improved the solubility of proteins. These findings provide new insights for the rational design of PAL in the future.


Asunto(s)
Anabaena variabilis , Fenilanina Amoníaco-Liasa , Fenilanina Amoníaco-Liasa/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Anabaena variabilis/genética , Anabaena variabilis/metabolismo , Secuencia de Aminoácidos , Catálisis
19.
J Nat Prod ; 76(11): 2153-7, 2013 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-24164206

RESUMEN

A PCR-based genetic screening experiment targeting the dTDP-glucose-4,6-dehydratase gene revealed that a marine sediment-derived strain, Streptomyces sp. 7-145, had the potential to produce glycosidic antibiotics. Chemical investigation of culture extracts of this strain yielded two new 6-deoxyhexose-containing antibiotics, 11',12'-dehydroelaiophylin (1) and 11,11'-O-dimethyl-14'-deethyl-14'-methylelaiophylin (2), together with four known elaiophylin analogues (3-6). Their structures were determined by extensive NMR, MS, and CD analyses. Compounds 1, 3, 4, and 6 showed good antibacterial activity against methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci pathogens.


Asunto(s)
Antibacterianos/aislamiento & purificación , Macrólidos/aislamiento & purificación , Streptomyces/química , Antibacterianos/química , Antibacterianos/farmacología , Macrólidos/química , Macrólidos/farmacología , Biología Marina , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Resonancia Magnética Nuclear Biomolecular , Reacción en Cadena de la Polimerasa , Vancomicina/farmacología
20.
Yao Xue Xue Bao ; 48(9): 1369-75, 2013 Sep.
Artículo en Zh | MEDLINE | ID: mdl-24358768

RESUMEN

In the last decade, along with the development of taxonomy research in marine-derived actinobacteria, more and more halogenated natural products were discovered from marine actinobacteria. Most of them showed good biological activity and unique structure compared to those from land. The special halogenation mechanism in some compounds' biosynthesis has drawn great attention. So in this review, we focus on the halogenated natural products from marine actinobacteria and their halogenation mechanisms.


Asunto(s)
Actinobacteria/química , Antibacterianos/aislamiento & purificación , Antineoplásicos/aislamiento & purificación , Productos Biológicos/aislamiento & purificación , Halogenación , Biología Marina , Antibacterianos/química , Antibacterianos/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Productos Biológicos/química , Productos Biológicos/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Humanos , Estructura Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA