Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
J Chem Phys ; 160(4)2024 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-38265089

RESUMEN

We utilized molecular dynamic simulation to investigate the glass formation of star polymer melts in which the topological complexity is varied by altering the number of star arms (f). Emphasis was placed on how the "confinement effect" of repulsive inter-arm interactions within star polymers influences the thermodynamics and dynamics of star polymer melts. All the characteristic temperatures of glass formation were found to progressively increase with increasing f, but unexpectedly the fragility parameter KVFT was found to decrease with increasing f. As previously observed, stars having more than 5 or 6 arms adopt an average particle-like structure that is more contracted relative to the linear polymer size having the same mass and exhibit a strong tendency for intermolecular and intramolecular segregation. We systematically analyzed how varying f alters collective particle motion, dynamic heterogeneity, the decoupling exponent ζ phenomenologically linking the slow ß- and α-relaxation times, and the thermodynamic scaling index γt. Consistent with our hypothesis that the segmental dynamics of many-arm star melts and thin supported polymer films should exhibit similar trends arising from the common feature of high local segmental confinement, we found that ζ increases considerably with increasing f, as found in supported polymer films with decreasing thickness. Furthermore, increasing f led to greatly enhanced elastic heterogeneity, and this phenomenon correlates strongly with changes in ζ and γt. Our observations should be helpful in building a more rational theoretical framework for understanding how molecular topology and geometrical confinement influence the dynamics of glass-forming materials more broadly.

2.
Adv Mater ; 36(24): e2400544, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38390909

RESUMEN

Engineered protein fibers are promising biomaterials with diverse applications due to their tunable protein structure and outstanding mechanical properties. However, it remains challenging at the molecular level to achieve satisfied mechanical properties and environmental tolerance simultaneously, especially under extreme acid conditions. Herein, the construction of artificial fibers comprising chimeric proteins made of rigid amyloid peptide and flexible cationic elastin-like protein (ELP) module is reported. The amyloid peptide readily assembles into highly organized ß-sheet structures that can be further strengthened by the coordination of Cu2+, while the flexible ELP module allows the formation of imine-based crosslinking networks. These double networks synergistically enhance the mechanical properties of the fibers, leading to a high tensile strength and toughness, overwhelming many reported recombinant spidroin fibers. Notably, the coordination of Cu2+ with serine residues could stabilize ß-sheet structures in the fibers under acidic conditions, which makes the fibers robust against acid, thus enabling their successful utilization in gastric perforation suturing. This work highlights the customization of double networks at the molecular level to create tailored high-performance protein fibers for various application scenarios.


Asunto(s)
Cobre , Iminas , Cobre/química , Iminas/química , Resistencia a la Tracción , Elastina/química , Elastina/metabolismo , Ácidos/química , Materiales Biocompatibles/química
3.
Adv Mater ; 36(27): e2400970, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38623832

RESUMEN

The lignin derived ultrathin all-solid composite polymer electrolyte (CPE) with a thickness of only 13.2 µm, which possess 3D nanofiber ionic bridge networks composed of single-ion lignin-based lithium salt (L-Li) and poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) as the framework, and poly(ethylene oxide)/lithium bis(trifluoromethanesulfonyl)imide (PEO/LiTFSI) as the filler, is obtained through electrospinning/spraying and hot-pressing. t. The Li-symmetric cell assembled with the CPE can stably cycle more than 6000 h under 0.5 mA cm-2 with little Li dendrites growth. Moreover, the assembled Li||CPE||LiFePO4 cells can stably cycle over 700 cycles at 0.2 C with a super high initial discharge capacity of 158.5 mAh g-1 at room temperature, and a favorable capacity of 123 mAh g-1 at -20 °C for 250 cycles. The excellent electrochemical performance is mainly attributed to the reason that the nanofiber ionic bridge network can afford uniformly dispersed single-ion L-Li through electrospinning, which synergizes with the LiTFSI well dispersed in PEO to form abundant and efficient 3D Li+ transfer channels. The ultrathin CPE induces uniform deposition of Li+ at the interface, and effectively inhibit the lithium dendrites. This work provides a promising strategy to achieve ultrathin biobased electrolytes for solid-state lithium ion batteries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA