Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Rev Lett ; 129(7): 073902, 2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-36018700

RESUMEN

We model propagation of far-red-detuned optical vortex beams through a Bose-Einstein condensate using nonlinear Schrödinger and Gross-Pitaevskii equations. We show the formation of coupled light-atomic solitons that rotate azimuthally before moving off tangentially, carrying angular momentum. The number, and velocity, of solitons, depends on the orbital angular momentum of the optical field. Using a Bessel-Gauss beam increases radial confinement so that solitons can rotate with fixed azimuthal velocity. Our model provides a highly controllable method of channeling a BEC and atomic transport.

2.
Phys Rev Lett ; 126(20): 203201, 2021 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-34110195

RESUMEN

We study the transverse self-structuring of cold atomic clouds with effective atomic interactions mediated by a coherent driving beam retroreflected by means of a single mirror. The resulting self-structuring due to optomechanical forces is much richer than that of an effective-Kerr medium, displaying hexagonal, stripe and honeycomb phases depending on the interaction strength parametrized by the linear susceptibility. Phase domains are described by Ginzburg-Landau amplitude equations with real coefficients. In the stripe phase the system recovers inversion symmetry. Moreover, the subcritical character of the honeycomb phase allows for light-density feedback solitons functioning as self-sustained dark atomic traps with motion controlled by phase gradients in the driving beam.

3.
Opt Express ; 27(22): 31273-31289, 2019 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-31684362

RESUMEN

Turing patterns in self-focussing nonlinear optical cavities pumped by beams carrying orbital angular momentum (OAM) m are shown to rotate with an angular velocity ω=2m/R 2 on rings of radii R. We verify this prediction in 1D models on a ring and for 2D Laguerre-Gaussian and top-hat pumps with OAM. Full control over the angular velocity of the pattern in the range -2m/R 2≤ω≤2m/R 2 is obtained by using cylindrical vector beam pumps that consist of orthogonally polarized eigenmodes with equal and opposite OAM. Using Poincaré beams that consist of orthogonally polarized eigenmodes with different magnitudes of OAM, the resultant angular velocity is ω=(m L+m R)/R 2, where m L,m R are the OAMs of the eigenmodes, assuming good overlap between the eigenmodes. If there is no, or very little, overlap between the modes then concentric Turing pattern rings, each with angular velocity ω=2m L,R /R 2 will result. This can lead to, for example, concentric, counter-rotating Turing patterns creating an optical peppermill-type structure. Full control over the speeds of multiple rings has potential applications in particle manipulation and stretching, atom trapping, and circular transport of cold atoms and BEC wavepackets.

4.
Phys Rev Lett ; 116(4): 043903, 2016 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-26871334

RESUMEN

We present a spatiotemporal mechanism for producing 2D optical rogue waves in the presence of a turbulent state with creation, interaction, and annihilation of optical vortices. Spatially periodic structures with bound phase lose stability to phase unbound turbulent states in complex Ginzburg-Landau and Swift-Hohenberg models with external driving. When the pumping is high and the external driving is low, synchronized oscillations are unstable and lead to spatiotemporal vortex-mediated turbulence with high excursions in amplitude. Nonlinear amplification leads to rogue waves close to turbulent optical vortices, where the amplitude tends to zero, and to probability density functions (PDFs) with long tails typical of extreme optical events.

5.
Phys Rev Lett ; 117(23): 233903, 2016 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-27982639

RESUMEN

We study the nonlinear optical propagation of two different classes of light beams with space-varying polarization-radially symmetric vector beams and Poincaré beams with lemon and star topologies-in a rubidium vapor cell. Unlike Laguerre-Gauss and other types of beams that quickly experience instabilities, we observe that their propagation is not marked by beam breakup while still exhibiting traits such as nonlinear confinement and self-focusing. Our results suggest that, by tailoring the spatial structure of the polarization, the effects of nonlinear propagation can be effectively controlled. These findings provide a novel approach to transport high-power light beams in nonlinear media with controllable distortions to their spatial structure and polarization properties.

6.
J Phys Chem A ; 118(19): 3472-8, 2014 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-24655409

RESUMEN

We suggest the use of certain readily producible types of light to exert a force that points in opposite directions for the enantiomers of a chiral molecule and propose multiple devices based upon this novel manifestation of optical activity: in particular, our discriminatory chiral diffraction grating; a device that could be employed, for example, to measure the enantiomeric excess of a sample of chiral molecules simply and to high precision. Our work is relevant for many types of molecules and our proposed devices may be realizable using currently existing technology.

7.
Philos Trans A Math Phys Eng Sci ; 375(2087)2017 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-28069764

RESUMEN

Chirality is exhibited by objects that cannot be rotated into their mirror images. It is far from obvious that this has anything to do with the angular momentum of light, which owes its existence to rotational symmetries. There is nevertheless a subtle connection between chirality and the angular momentum of light. We demonstrate this connection and, in particular, its significance in the context of chiral light-matter interactions.This article is part of the themed issue 'Optical orbital angular momentum'.

8.
Phys Rev E Stat Nonlin Soft Matter Phys ; 81(2 Pt 2): 026308, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20365652

RESUMEN

We present an experimental procedure to perform broadband microrheological measurements with optical tweezers. A generalized Langevin equation is adopted to relate the time-dependent trajectory of a particle in an imposed flow to the frequency-dependent moduli of the complex fluid. This procedure allows us to measure the material linear viscoelastic properties across the widest frequency range achievable with optical tweezers.

9.
J Biophotonics ; 3(4): 244-51, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20301124

RESUMEN

The hydrodynamic interactions of micro-silica spheres trapped in a variety of networks using holographic optical tweezers are measured and characterized in terms of their predicted eigenmodes. The characteristic eigenmodes of the networks are distinguishable within 20-40 seconds of acquisition time. Three different multi-particle networks are considered; an eight-particle linear chain, a nine-particle square grid and, finally, an eight-particle ring. The eigenmodes and their decay rates are shown to behave as predicted by the Oseen tensor and the Langevin equation, respectively. Finally, we demonstrate the potential of using our micro-ring as a non-invasive sensor to the local environmental viscosity, by showing the distortion of the eigenmode spectrum due to the proximity of a planar boundary.


Asunto(s)
Microesferas , Pinzas Ópticas , Reología/métodos , Algoritmos , Coloides/química , Microscopía , Reología/instrumentación , Dióxido de Silicio/química , Viscosidad
10.
Science ; 329(5992): 662-5, 2010 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-20689014

RESUMEN

Entanglement of the properties of two separated particles constitutes a fundamental signature of quantum mechanics and is a key resource for quantum information science. We demonstrate strong Einstein, Podolsky, and Rosen correlations between the angular position and orbital angular momentum of two photons created by the nonlinear optical process of spontaneous parametric down-conversion. The discrete nature of orbital angular momentum and the continuous but periodic nature of angular position give rise to a special sort of entanglement between these two variables. The resulting correlations are found to be an order of magnitude stronger than those allowed by the uncertainty principle for independent (nonentangled) particles. Our results suggest that angular position and orbital angular momentum may find important applications in quantum information science.

11.
Phys Rev Lett ; 95(7): 073903, 2005 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-16196783

RESUMEN

The excess noise factor is calculated analytically for a very general class of optical cavities, and is shown to have a superexponential dependence on cavity misalignment, easily attaining values of order 10(10). The physical basis is shown to be "ransient gain" associated with amplified spontaneous emission. Similarly dramatic effects of symmetry breaking can be expected in other physical systems with non-normal modes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA