Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Am J Hum Genet ; 109(3): 393-404, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35108496

RESUMEN

Identifying gene sets that are associated to disease can provide valuable biological knowledge, but a fundamental challenge of gene set analyses of GWAS data is linking disease-associated SNPs to genes. Transcriptome-wide association studies (TWASs) detect associations between the genetically predicted expression of a gene and disease risk, thus implicating candidate disease genes. However, causal disease genes at TWAS-associated loci generally remain unknown due to gene co-regulation, which leads to correlations across genes in predicted expression. We developed a method, gene co-regulation score (GCSC) regression, to identify gene sets that are enriched for disease heritability explained by predicted expression. GCSC regresses TWAS chi-square statistics on gene co-regulation scores reflecting correlations in predicted gene expression; a gene set is enriched for heritability if genes with high co-regulation to the set have higher TWAS chi-square statistics than genes with low co-regulation to the set, beyond what is expected based on co-regulation to all genes. We verified via simulations that GCSC is well calibrated and well powered. We applied GCSC to gene expression data from GTEx (48 tissues) and GWAS summary statistics for 43 independent diseases and complex traits analyzing a broad set of biological pathways and specifically expressed gene sets. We identified many enriched sets, recapitulating known biology. For Alzheimer disease, we detected evidence of an immune basis, and specifically a role for antigen presentation, in analyses of both biological pathways and specifically expressed gene sets. Our results highlight the advantages of leveraging gene co-regulation within the TWAS framework to identify enriched gene sets.


Asunto(s)
Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo , Predisposición Genética a la Enfermedad , Humanos , Herencia Multifactorial , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo/genética , Transcriptoma
2.
Nat Genet ; 52(6): 626-633, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32424349

RESUMEN

Disease variants identified by genome-wide association studies (GWAS) tend to overlap with expression quantitative trait loci (eQTLs), but it remains unclear whether this overlap is driven by gene expression levels 'mediating' genetic effects on disease. Here, we introduce a new method, mediated expression score regression (MESC), to estimate disease heritability mediated by the cis genetic component of gene expression levels. We applied MESC to GWAS summary statistics for 42 traits (average N = 323,000) and cis-eQTL summary statistics for 48 tissues from the Genotype-Tissue Expression (GTEx) consortium. Averaging across traits, only 11 ± 2% of heritability was mediated by assayed gene expression levels. Expression-mediated heritability was enriched in genes with evidence of selective constraint and genes with disease-appropriate annotations. Our results demonstrate that assayed bulk tissue eQTLs, although disease relevant, cannot explain the majority of disease heritability.


Asunto(s)
Expresión Génica , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo/estadística & datos numéricos , Sitios de Carácter Cuantitativo , Calibración , Estudio de Asociación del Genoma Completo/métodos , Humanos , Desequilibrio de Ligamiento , Polimorfismo de Nucleótido Simple , Análisis de Regresión
3.
Sci Rep ; 9(1): 11944, 2019 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-31420589

RESUMEN

Aneuploidy, defined as abnormal chromosome number or somatic DNA copy number, is a characteristic of many aggressive tumors and is thought to drive tumorigenesis. Gene expression-aneuploidy association studies have previously been conducted to explore cellular mechanisms associated with aneuploidy. However, in an observational setting, gene expression is influenced by many factors that can act as confounders between gene expression and aneuploidy, leading to spurious correlations between the two variables. These factors include known confounders such as sample purity or batch effect, as well as gene co-regulation which induces correlations between the expression of causal genes and non-causal genes. We use a linear mixed-effects model (LMM) to account for confounding effects of tumor purity and gene co-regulation on gene expression-aneuploidy associations. When applied to patient tumor data across diverse tumor types, we observe that the LMM both accounts for the impact of purity on aneuploidy measurements and identifies a new association between histone gene expression and aneuploidy.


Asunto(s)
Aneuploidia , Regulación Neoplásica de la Expresión Génica , Histonas/genética , Proteínas de Neoplasias/genética , Neoplasias/diagnóstico , Neoplasias/genética , Carcinogénesis/genética , Carcinogénesis/metabolismo , Carcinogénesis/patología , Variaciones en el Número de Copia de ADN , Conjuntos de Datos como Asunto , Estudio de Asociación del Genoma Completo , Inestabilidad Genómica , Histonas/metabolismo , Humanos , Modelos Lineales , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Neoplasias/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA