Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Plant Dis ; 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38035788

RESUMEN

Hypericum chinensis is growing in popularity amongst consumers in cut-flower and pop-flower market as an ornamental woody plant for its florid berry and colorful flower. In August 2019, a new leaf spot disease was observed on H. chinensis in three commercial nurseries in Kunming (25°05'N, 102°72'E), Yunnian province, China. Disease symptoms were observed on approximately 40% of the plants one year after planting and 30% of the leaves were infected. Leaf symptoms began as small, water-soaked lesions on young leaves which later became larger, dark brown and necrotic. The lesion size ranged from 0.2 to 2.8 cm in diameter. For pathogen isolation, three samples of symptomatic leaves were collected from four different nurseries. The leaves were cut into 0.5 mm pieces, surface sterilized using 70% ethanol for 30 s, and 3% NaOCl for 5 min, rinsed three times in sterilized distilled water and plated on potato dextrose agar (PDA) (Zhou et al. 2023). The plates were incubated at 26°C in the dark for 3 days. Eight isolates with comparable morphological characteristics were obtained. Initially, colonies produced pale gray to white aerial mycelia, turning dark gray after 5 days. The isolates produced hyaline, single celled, straight and cylindrical conidia, with mean size 9.7 to 14.8 µm long × 3.7 to 5.6 µm wide (n = 100). Morphological characteristics were consistent with Colletotrichum sp. (Bailey and Jeger 1992). For molecular analysis, genomic DNA was extracted from three representative isolates (XSD1, XSD3 and XSD5), amplified using the primers ITS1/ITS4 (Yin et al. 2012) and T1/Bt2b (Glass and Donaldson 1995) and submitted to sequencing (Weir et al. 2012). DNA sequences of the isolates XSD2, XSD3 and XSD8 were identical. DNA sequences of a representative isolate XSD2 were deposited in GenBank (accession no. MW202334 for ITS, and OR347007 for TUB 2). MegaBLAST analysis of the ITS and TUB2 sequences showed 99.5% and 99.3% similarity with C. kahawae strain ICMP 18539 (accession no. NR_120138.1 for ITS) and strain IMI319418 (JX145227.1 for TUB 2). Pathogenicity tests were conducted by inoculating the pathogen on healthy mature leaves of H. chinensis in the field. Ten leaves (two leaves/plant) were inoculated by spraying conidial suspension (106 spores/ml) of isolates XSD1, XSD3 and XSD5, and covered with plastic bags to maintain high humidity for 48 hours, respectively. Leaves treated with sterile distilled water served as a control. All inoculated leaves showed symptoms similar to those observed in the field at 23±5°C 10 days after inoculation. No symptoms developed on non-inoculated leaves. The pathogen was re-isolated from inoculated diseased leaves and identified as C. kahawae based on morphological and molecular characters. C. kahawae has been reported to cause leaf spot on cultivated rocket in Italy (Garibaldi et al. 2016), and anthracnose disease on tree tomato in Colombia (Rojas et al. 2018), to our knowledge, this is the first report of C. kahawae causing anthracnose on H. chinensis worldwide. Due to important ornamental and economic value of H. chinensis, the distribution of C. kahawae needs to be investigated and monitored for effective disease management strategies to be developed.

2.
BMC Genomics ; 23(1): 278, 2022 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-35392815

RESUMEN

BACKGROUND: Rice sheath blight, caused by Rhizoctonia solani Kühn (teleomorph: Thanatephorus cucumeris), is one of the most severe diseases in rice (Oryza sativa L.) worldwide. Studies on resistance genes and resistance mechanisms of rice sheath blight have mainly focused on indica rice. Rice sheath blight is a growing threat to rice production with the increasing planting area of japonica rice in Northeast China, and it is therefore essential to explore the mechanism of sheath blight resistance in this rice subspecies. RESULTS: In this study, RNA-seq technology was used to analyse the gene expression changes of leaf sheath at 12, 24, 36, 48, and 72 h after inoculation of the resistant cultivar 'Shennong 9819' and susceptible cultivar 'Koshihikari' with R. solani. In the early stage of R. solani infection of rice leaf sheaths, the number of differentially expressed genes (DEGs) in the inoculated leaf sheaths of resistant and susceptible cultivars showed different regularity. After inoculation, the number of DEGs in the resistant cultivar fluctuated, while the number of DEGs in the susceptible cultivar increased first and then decreased. In addition, the number of DEGs in the susceptible cultivar was always higher than that in the resistant cultivar. After inoculation with R. solani, the overall transcriptome changes corresponding to multiple biological processes, molecular functions, and cell components were observed in both resistant and susceptible cultivars. These included metabolic process, stimulus response, biological regulation, catalytic activity, binding and membrane, and they were differentially regulated. The phenylalanine metabolic pathway; tropane, piperidine, and pyridine alkaloid biosynthesis pathways; and plant hormone signal transduction were significantly enriched in the early stage of inoculation of the resistant cultivar Shennong 9819, but not in the susceptible cultivar Koshihikari. This indicates that the response of the resistant cultivar Shennong 9819 to pathogen stress was faster than that of the susceptible cultivar. The expression of plant defense response marker PR1b gene, transcription factor OsWRKY30 and OsPAL1 and OsPAL6 genes that induce plant resistance were upregulated in the resistant cultivar. These data suggest that in the early stage of rice infection by R. solani, there is a pathogen-induced defence system in resistant rice cultivars, involving the expression of PR genes, key transcription factors, PAL genes, and the enrichment of defence-related pathways. CONCLUSION: The transcriptome data revealed the molecular and biochemical differences between resistant and susceptible cultivars of rice after inoculation with R. solani, indicating that resistant cultivars have an immune response mechanism in the early stage of pathogen infection. Disease resistance is related to the overexpression of PR genes, key transcriptome factors, and PAL genes, which are potential targets for crop improvement.


Asunto(s)
Oryza , Oryza/metabolismo , Enfermedades de las Plantas/genética , Rhizoctonia/genética , Factores de Transcripción/metabolismo , Transcriptoma
3.
Plant Dis ; 2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35640954

RESUMEN

Geranium wilfordii Maxim. is a weed of perennial herbs and considerable medicinal plant for treating acute and chronic rheumatalgia in China. In August 2019, leaf spots on G. wilfordii were observed in Harbin (45°60'N, 126°64'E), Heilongjiang Province, China. The disease occurred on 15 to 30% of G. wilfordii leaves in three nurseries (~1.5 ha/each nursery). Initial symptoms were brown necrotic spots with a gray-white center, which enlarged gradually from approximately 1 to 5 mm in diameter, and produced concentric rings and became necrotic. Twelve infected tissues from twelve diseased leaves were surface disinfested in 0.5% NaOCl for 5 min, rinsed three times in sterile distilled water, dried on sterilized filter paper and cultured on potato dextrose agar (PDA) amended with 50 µg/ml streptomycin at 26°C for 5 days. Eight fungal cultures with consistent characteristics were obtained and subcultured by transferring hyphal tips onto fresh PDA. Single-conidium isolates were generated with methods reported previously (Leslie and Summerell 2006). Colonies on PDA consisted of cottony, dense, grayish white mycelium, pale gray colony. Conidia of a representative isolate LGC2 were single-celled, hyaline, cylindrical to slightly curved with a rounded apex and truncated base that measured 16.2 to 22.5 µm (length) × 2.6 to 3.7 µm (width) (n = 50). The appressoria were elliptic to claviform or slightly lobed on synthetic nutrient-poor agar. Based on these characteristics, the eight isolates were identified as Colletotrichum dematium (Damm et al. 2009). Genomic DNA was extracted from representative isolates LGC2, LGC3, LGC5 and the internal transcribed spacer regions (ITS),beta-tubulin (TUB2) and actin (ACT) were amplified and sequenced using the primers ITS1/ITS4 (Yin et al. 2012), T1/Bt2b (Glass and Donaldson 1995) and ACT-512F/ACT-783R (Carbone and Kohn 1999), respectively. DNA sequences of isolates LGC2, LGC3, and LGC5 were identical and deposited onto the GenBank (accession nos. MW193053.1 for ITS, MZ357349.1 for TUB2, and OL956946.1 for ACT). MegaBLAST analysis showed 100%, 99.7% and 100% identical to C. dematium isolates CBS 125.25 (accession nos. NR_111453.1 for ITS 552/553 bp, GU228113.1 for TUB2 386/387 bp, and GU227917.1 for ACT 231/231 bp respectively. A pathogenicity test was performed on with a representative isolate LGC2 by spraying spore suspension (1 × 106 conidia/ml) on the surfaces of all leaves of ten healthy three-month-old G. wilfordii plants. All leaves of ten control plants were inoculated with sterile water to serve as the control. All plants were placed in a humidity chamber (>95% RH, 26℃) for 48 h after inoculation and then transfered in a greenhouse at 22/28°C with a 12:12h light-dark cycle for 10 days. All inoculated leaves showed symptoms similar to those observed in the fields, while no symptoms were observed on the control leaves. The experiment was conducted twice. The fungus was re-isolated from the infected leaves and confirmed to be C. dematium according to morphological and molecular characteristics. C. dematium has previously been reported on common knotgrass (Liu et al. 2016), on piper betle (Sun et al. 2020), peanut anthracnose in China (Yu et al. 2020). To our knowledge, this is the first report of C. dematium causing G. wilfordii anthracnose in China. G. wilfordii anthracnose caused by C. dematium poses a threat to significantly reduce the quality of G. wilfordii. Therefore, its distribution needs to be investigated and effective disease management strategies developed.

4.
BMC Plant Biol ; 21(1): 588, 2021 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-34895144

RESUMEN

BACKGROUND: Frogeye leaf spot (FLS) is a destructive fungal disease that affects soybean production. The most economical and effective strategy to control FLS is the use of resistant cultivars. However, the use of a limited number of resistant loci in FLS management will be countered by the emergence of new high-virulence Cercospora sojina races. Therefore, we identified quantitative trait loci (QTL) that control resistance to FLS and identified novel resistant genes using a genome-wide association study (GWAS) on 234 Chinese soybean cultivars. RESULTS: A total of 30,890 single nucleotide polymorphism (SNP) markers were used to estimate linkage disequilibrium (LD) and population structure. The GWAS results showed four loci (p < 0.0001) distributed over chromosomes (Chr.) 5 and 20, that are significantly associated with FLS resistance. No previous studies have reported resistance loci in these regions. Subsequently, 45 genes in the two resistance-related haplotype blocks were annotated. Among them, Glyma20g31630 encoding pyruvate dehydrogenase (PDH), Glyma05g28980, which encodes mitogen-activated protein kinase 7 (MPK7), and Glyma20g31510, Glyma20g31520 encoding calcium-dependent protein kinase 4 (CDPK4) in the haplotype blocks deserves special attention. CONCLUSIONS: This study showed that GWAS can be employed as an effective strategy for identifying disease resistance traits in soybean and narrowing SNPs and candidate genes. The prediction of candidate genes in the haplotype blocks identified by disease resistance loci can provide a useful reference to study systemic disease resistance.


Asunto(s)
Cercospora/patogenicidad , Resistencia a la Enfermedad/genética , Glycine max/genética , Enfermedades de las Plantas/inmunología , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo/genética , Estudio de Asociación del Genoma Completo , Genotipo , Haplotipos , Modelos Lineales , Desequilibrio de Ligamiento , Fenotipo , Enfermedades de las Plantas/microbiología , Glycine max/inmunología , Glycine max/microbiología , Virulencia
5.
Plant Dis ; 2021 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-33728961

RESUMEN

Corn (Zea mays L.) stalk rot, caused by various pathogens, is one of the most prevalent corn diseases worldwide. In October 2019, a survey was carried out to determine pathogenic fungi causing corn stalk rot in 3 fields (~120 ha) in Harbin city (44.04°N 125.42°E), Heilongjiang Province, China. In each field, 100 plants at 5 sampling points were assessed at the milk stage (R3) of development. Disease incidence was 12%. Symptomatic plants showed rapid death of the upper leaves, drooping ears and stalks were soft, hollow, watersoaked with white hyphae present on teh outside of the stalk. Pieces of tissue (0.25 cm2) from 15 individual diseased stalks (5 plants/field) were surface disinfested in 0.5% NaOCl for 5 min, rinsed three times in sterile distilled water and cultured on potato dextrose agar (PDA) containing streptomycin (50 µg/mL). After three days of incubation, a total of twelve fungal cultures with uniform characteristics were isolated and subcultured by transferring hyphal tips onto V8. Colonies on V8 selective medium were creamy white and floccus, with a growth rate of 20 mm/day at 26°C in darkness. Oospores were mostly plerotic, and oogonia walls were 1.3 to 2.7 µm thick (n = 50); globose oogonia, 23.9 to 30.5 µm in diameter (n = 50), and had 1 to 8 antheridia. Based on these characteristics, the isolates were identified as Pythium sp. (van der Plaats-Niterink 1981). Genomic DNA was extracted from single conidial cultures of representative isolates (MZYJF1, MZYJF3 and MZYJF7), and the internal transcribed spacer (ITS) region and cytochrome coxidase subunit II (CoxII) gene were amplified and sequenced using the primers ITS1/ITS4 (Yin et al. 2012) and COX2f/COX2r (Hudspeth et al. 2000), respectively. Partial nucleotide sequences of 796 bp and 573 bp for the ITS and COX11 amplicons, respectively, were obtained and deposited in GenBank (accession no. MW447501 for ITS, and MW471006 for COXII). MegaBLAST analysis of the ITS and CoxII sequences of MZYJF1 isolate showed 100% similarity with sequences from P. aristosporum strain ATCC 11101. The isolates were identified as P. aristosporum based on the fact that P. aristosporum has aplerotic oospores and less antheridia per oogonium than P. arrhenomanes (van der Plaats-Niterink 1981). A pathogenicity test was performed on corn cv. Xianyu 335 at tasseling stage (VT) in the field. An oospore suspension, obtained from isolate MZYJF1 grown on V8 agar media for 4 weeks (Green and Jensen, 2000) and diluted to 1×104 oospores/mL using blood cell counting method, was injected into the base of the maize stems of 6 healthy plants (1.5 ml/plant ) using a syringe. Control plants were injected with distilled sterile water. All inoculated plants showed symptoms 25 days after inoculation that were similar to those observed in the field. The oomycete of P. aristosporum was reisolated from symptomatic plants on V8 agar media and identified according to morphological and molecular characteristics. No symptoms were observed on the control plants. P. aristosporum has previously been reported on causing damping-off of pea in the Columbia basin of Central Washington (Alcala et al. 2016) and on soybean in North Dakota (Zitnick-Anderson and Nelson 2015). To our knowledge, this is the first report of P. aristosporum causing corn stalk rot in China. Corn stalk rot caused by P. aristosporum poses a threat to significantly reduce the quality of corn. Thus, its distribution needs to be investigated and effective disease management strategies developed.

6.
BMC Genomics ; 21(1): 172, 2020 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-32075575

RESUMEN

BACKGROUND: Recently, a new strain of Cercospora sojina (Race15) has been identified, which has caused the breakdown of resistance in most soybean cultivars in China. Despite this serious yield reduction, little is known about why this strain is more virulent than others. Therefore, we sequenced the Race15 genome and compared it to the Race1 genome sequence, as its virulence is significantly lower. We then re-sequenced 30 isolates of C. sojina from different regions to identifying differential virulence genes using genome-wide association analysis (GWAS). RESULTS: The 40.12-Mb Race15 genome encodes 12,607 predicated genes and contains large numbers of gene clusters that have annotations in 11 different common databases. Comparative genomics revealed that although these two genomes had a large number of homologous genes, their genome structures have evolved to introduce 245 specific genes. The most important 5 candidate virulence genes were located on Contig 3 and Contig 1 and were mainly related to the regulation of metabolic mechanisms and the biosynthesis of bioactive metabolites, thereby putatively affecting fungi self-toxicity and reducing host resistance. Our study provides insight into the genomic basis of C. sojina pathogenicity and its infection mechanism, enabling future studies of this disease. CONCLUSIONS: Via GWAS, we identified five candidate genes using three different methods, and these candidate genes are speculated to be related to metabolic mechanisms and the biosynthesis of bioactive metabolites. Meanwhile, Race15 specific genes may be linked with high virulence. The genes highly prevalent in virulent isolates should also be proposed as candidates, even though they were not found in our SNP analysis. Future work should focus on using a larger sample size to confirm and refine candidate gene identifications and should study the functional roles of these candidates, in order to investigate their potential roles in C. sojina pathogenicity.


Asunto(s)
Ascomicetos/genética , Proteínas Fúngicas/genética , Glycine max/microbiología , Polimorfismo de Nucleótido Simple , Virulencia/genética , Ascomicetos/patogenicidad , Estudio de Asociación del Genoma Completo , Genómica , Micosis , Enfermedades de las Plantas
7.
BMC Microbiol ; 20(1): 166, 2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32546122

RESUMEN

BACKGROUND: Cercospora sojina is a fungal pathogen that causes frogeye leaf spot in soybean-producing regions, leading to severe yield losses worldwide. It exhibits variations in virulence due to race differentiation between strains. However, the candidate virulence-related genes are unknown because the infection process is slow, making it difficult to collect transcriptome samples. RESULTS: In this study, virulence-related differentially expressed genes (DEGs) were obtained from the highly virulent Race 15 strain and mildly virulent Race1 strain under nitrogen starvation stress, which mimics the physiology of the pathogen during infection. Weighted gene co-expression network analysis (WGCNA) was then used to find co-expressed gene modules and assess the relationship between gene networks and phenotypes. Upon comparison of the transcriptomic differences in virulence between the strains, a total of 378 and 124 DEGs were upregulated, while 294 and 220 were downregulated in Race 1 and Race 15, respectively. Annotation of these DEGs revealed that many were associated with virulence differences, including scytalone dehydratase, 1,3,8-trihydroxynaphthalene reductase, and ß-1,3-glucanase. In addition, two modules highly correlated with the highly virulent strain Race 15 and 36 virulence-related DEGs were found to contain mostly ß-1,4-glucanase, ß-1,4-xylanas, and cellobiose dehydrogenase. CONCLUSIONS: These important nitrogen starvation-responsive DEGs are frequently involved in the synthesis of melanin, polyphosphate storage in the vacuole, lignocellulose degradation, and cellulose degradation during fungal development and differentiation. Transcriptome analysis indicated unique gene expression patterns, providing further insight into pathogenesis.


Asunto(s)
Cercospora/patogenicidad , Perfilación de la Expresión Génica/métodos , Nitrógeno/metabolismo , Factores de Virulencia/genética , Cercospora/clasificación , Cercospora/genética , Cercospora/metabolismo , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Redes Reguladoras de Genes , Anotación de Secuencia Molecular , Fenotipo , Análisis de Secuencia de ARN , Glycine max/microbiología , Especificidad de la Especie , Estrés Fisiológico
8.
Parasitol Res ; 116(4): 1165-1174, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28160073

RESUMEN

In schistosomiasis, egg deposition in the liver contributes to the formation of hepatic granuloma and fibrosis, which are the most serious clinical pathological features. It has been proposed that activation of the nuclear factor kappa B (NF-κB) signaling pathways is closely associated with the development of hepatic granuloma and fibrosis. Genistein has been shown to inhibit the activity of NF-κB signaling pathways, which might be a potential agent to protect against Schistosoma japonicum egg-induced liver granuloma and fibrosis. In this study, liver granuloma and fibrosis were induced by infecting BALB/c mice with 18 ± 3 cercariae of S. japonicum. At the beginning of egg granuloma formation (early phase genistein treatment from 4 to 6 weeks after infection) or after the formation of liver fibrosis (late phase genistein treatment from 6 to 10 weeks after infection), the infected mice were injected with genistein (25, 50 mg/kg). The results revealed that genistein treatment significantly decreased the extent of hepatic granuloma and fibrosis in infected mice. The activity of NF-κB signaling declined sharply after the treatment with genistein, as evidenced by the inhibition of NF-κB-p65, phospho-NF-κB-p65, and phospo-IκB-α expressions, as well as the expression of IκB-α and the messenger RNA (mRNA) expression of inflammatory cytokines (MCP1, TNFα, IL1ß, IL4, IL10) mediated by NF-κB signaling pathways in the early phase of the infection. Moreover, western blot and immunohistochemistry assays demonstrated that the contents of α-smooth muscle actin (α-SMA) and transforming growth factor-ß were dramatically reduced in liver tissue under the treatment of genistein in the late phase of the infection. At the same time, the mRNA expression of MCP1, TNFα, and IL10 was inhibited markedly. These results provided evidence that genistein reduces S. japonicum egg-induced liver granuloma and fibrosis, at least partly due to decreased NF-κB signaling, and subsequently decreased MCP1, TNFα, and IL10 expressions. This implies that genistein can be a potential natural agent against schistosomiasis.


Asunto(s)
Antiprotozoarios/uso terapéutico , Genisteína/uso terapéutico , Granuloma/tratamiento farmacológico , Quinasa I-kappa B/antagonistas & inhibidores , Cirrosis Hepática/tratamiento farmacológico , Schistosoma japonicum/efectos de los fármacos , Esquistosomiasis Japónica/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Factor de Transcripción ReIA/antagonistas & inhibidores , Animales , Cercarias/metabolismo , Quimiocina CCL2/biosíntesis , Quimiocina CCL2/genética , Activación Enzimática , Granuloma/parasitología , Granuloma/patología , Interleucina-10/biosíntesis , Interleucina-10/genética , Hígado/parasitología , Hígado/patología , Cirrosis Hepática/parasitología , Cirrosis Hepática/patología , Masculino , Ratones , Ratones Endogámicos BALB C , ARN Mensajero/metabolismo , Schistosoma japonicum/genética , Esquistosomiasis Japónica/parasitología , Factor de Necrosis Tumoral alfa/biosíntesis , Factor de Necrosis Tumoral alfa/genética
9.
Biomed Res Int ; 2023: 6407588, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36726839

RESUMEN

Purpose: To screen the main active components of Citrus aurantium through a network pharmacology approach, construct a component-disease target network, explore its molecular mechanism for the treatment of non-small-cell lung cancer (NSCLC), and validate it experimentally. Methods: The active ingredients in Citrus aurantium and the targets of Citrus aurantium and NSCLC were collected through the Traditional Chinese Medicine Systematic Pharmacology Database and Analysis Platform (TCMSP), GeneCards, and OMIM databases. The protein interaction network was constructed using the STRING database, and the component-disease relationship network graph was analyzed using Cytoscape 3.9.1. The Metascape database can be used for GO and KEGG enrichment analyses. The Kaplan-Meier plotter was applied for overall survival analysis of key targets of Citrus aurantium in the treatment of NSCLC. Real-time PCR (RT-PCR) and Western blotting were used to determine the mRNA and protein levels of key targets of Citrus aurantium for the treatment of NSCLC. Results: Five active ingredients of Citrus aurantium were screened, and 54 potential targets for the treatment of NSCLC were found, of which the key ingredient was nobiletin and the key targets are TP53, CXCL8, ESR1, PPAR-α, and MMP9. GO and KEGG enrichment analyses indicated that the mechanism of nobiletin in treating NSCLC may be related to the regulation of cancer signaling pathway, phosphatidylinositol-3 kinase (PI3K)/protein kinase B (Akt) signaling pathway, lipid and atherosclerosis signaling pathway, and neurodegenerative signaling pathway. The experimental results showed that nobiletin could inhibit the proliferation of NSCLC cells and upregulate the levels of P53 and PPAR-α and suppress the expression of MMP9 (P < 0.05). Conclusion: Citrus aurantium can participate in the treatment of NSCLC through multiple targets and pathways.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Citrus , Medicamentos Herbarios Chinos , Neoplasias Pulmonares , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Metaloproteinasa 9 de la Matriz , Receptores Activados del Proliferador del Peroxisoma , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Medicina Tradicional China , Medicamentos Herbarios Chinos/farmacología , Simulación del Acoplamiento Molecular
10.
Biomed Res Int ; 2022: 3268773, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36158891

RESUMEN

This study sought to explore the anticancer mechanism of Picrorhizae Rhizoma (PR) extract based on network pharmacology and molecular docking. The potential chemicals of PR were screened through the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database and relevant literatures. Corresponding targets of active ingredients were found with the help of the UniProtKB database, and therapeutic targets for cancer action were screened with the help of the GeneCards database. We used Cytoscape software to construct the compound-target-pathway network of PR extract. We utilized the STRING database to obtain the protein-protein interaction (PPI) network. We used DAVID database combining Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Finally, molecular docking was employed for initial efficacy checking. We have identified 16 potential active components of PR through screening, involving 112 disease action targets. Utilizing the GeneCards database, 112 intersecting targets between PR extract and cancer were found, which mainly exerts anticancer effects by regulating tumor necrosis factor (TNF), recombinant caspase 3 (CASP3), c-Jun NH2-terminal kinase (JNK)/JUN, epidermal growth factor receptor (EGFR), and estrogen receptor-1 (ESR1) with some other target genes and pathways associated with cancer. The major anticancer species are prostate cancer, colorectal cancer, small cell lung cancer, etc. In the molecular docking study, herbactin had a strong affinity for TNF. Based on network pharmacology and molecular docking studies, PR and their compounds have demonstrated potential anticancer activities against several key targets. Our preliminary findings provide a strong foundation for further experiments with PR constituents.


Asunto(s)
Medicamentos Herbarios Chinos , Neoplasias , Caspasa 3 , Medicamentos Herbarios Chinos/química , Receptores ErbB , Humanos , Medicina Tradicional China , Simulación del Acoplamiento Molecular , Neoplasias/tratamiento farmacológico , Farmacología en Red , Receptores de Estrógenos , Factores de Necrosis Tumoral/uso terapéutico
11.
Biomed Pharmacother ; 154: 113563, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35987162

RESUMEN

The present study aimed to recognize the recent literature to highlight the pharmacological impacts and highlight the therapeutic potential of the active molecule eriocitrin. Citrus limon are a good resource of the flavanone eriocitrin (eriodictyol 7-O-ß-D-rutinoside). Eriocitrin has potent biological actions due to its strong antioxidant, antitumor, anti-allergic, antidiabetic and anti-inflammatory activities. Eriocitrin is more potent in suppressing oxidative stress in diabetes mellitus (DM) and other chronic diseases incurred by excessive oxidative stress. During metabolism, eriocitrin is metabolized by gut microbiota, and a chain of molecules such as eriodictyol, methy-eriodictyol, 3,4-dihydroxyhydrocinnamic acid (DHCA), and much more conjugated molecules. More in-depth studies are recommended to explore this drug for clinical trials.


Asunto(s)
Citrus , Flavanonas , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Flavanonas/farmacología , Estrés Oxidativo
12.
Health Inf Sci Syst ; 10(1): 20, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36032777

RESUMEN

We designed a knee rehabilitation exercise game (Exergame) for home-based rehabilitation of patients with knee disorders. The system includes three functional components: knee exercise plan formulation, exergame, and exercise feedback. The 3D Human Pose Estimation based on images is used as the gesture interaction to capture the patient's primary joint motion data. We recruited 20 knee osteoarthritis (KOA) to evaluate the system's feasibility and user experience. The physician's group formulated the patient's exercise plans. The average accuracy of motion recognition is 95.2%, indicating that the system can effectively guide rehabilitation training for KOA patients. The results of the UEQ-S questionnaire, namely the practical quality value (1.63 ± 0.85), hedonic quality value (1.75 ± 0.86), and the total value (1.69 ± 0.86) of 20 patients, indicate that the system provides an excellent user experience, which improves the willingness and compliance of the patients for the active exercise. The above evidence confirms that the proposed approach is suitable for Knee disorders rehabilitation exercise and has promising application prospects. Supplementary Information: The online version contains supplementary material available at 10.1007/s13755-022-00189-5.

13.
Artículo en Inglés | MEDLINE | ID: mdl-36506811

RESUMEN

Quercetin, a natural flavonoid compound with a widespread occurrence throughout the plant kingdom, exhibits a variety of pharmacological activities. Because of the wide spectrum of health-promoting effects, quercetin has attracted much attention of dietitians and medicinal chemists. An updated review of the literature on quercetin was performed using PubMed, Embase, and Science Direct databases. This article presents an overview of recent developments in pharmacological activities of quercetin including anti-SARS-CoV-2, antioxidant, anticancer, antiaging, antiviral, and anti-inflammatory activities as well as the mechanism of actions involved. The biological activities of quercetin were evaluated both in vitro and in vivo, involving a number of cell lines and animal models, but metabolic mechanisms of quercetin in the human body are not clear. Therefore, further large sample clinical studies are needed to determine the appropriate dosage and form of quercetin for the treatment of the disease.

14.
Org Lett ; 23(13): 4971-4975, 2021 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-34114466

RESUMEN

An unprecedented C═C double bond cleavage of cyclopropenone and dioxygen activation by multiyne cascade coupling has been developed. This chemistry provides a novel, simple, and efficient approach to synthesize fully substituted conjugate benzofuran derivatives from simple substrates under mild conditions. The density functional theory (DFT) calculations reveal that the unique homolytic cleavages of cyclopropenone and molecular oxygen are crucial to the success of this reaction.

15.
Chem Commun (Camb) ; 56(96): 15185-15188, 2020 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-33216071

RESUMEN

A method for the intermolecular annulation of benzynes with allenes is disclosed. This protocol utilized allenes as an unconventional diene component for the selective synthesis of phenanthrenes and dihydrophenanthrenes under the control of different benzyne precursors, featuring high atom-economy and good functional group compatibility. Density functional theory (DFT) calculations reveal that different migratory routes of the aromatic C-H bond are crucial for the observed selectivity.

16.
Org Lett ; 22(3): 956-959, 2020 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-31989829

RESUMEN

The HDDA-derived benzyne intermediate was captured by oxazolines based on the addition reaction of benzyne to the C═N double bond. Benzoxazepine derivatives, fused benzoxazepine derivatives, and fully substituted indoles are synthesized in one step. The reaction does not require any catalyst or additives. Possible reaction mechanisms are presented.

17.
Front Plant Sci ; 9: 44, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29441079

RESUMEN

Phytophthora root rot (PRR) caused by Phytophthora sojae is a major soybean disease that causes severe economic losses worldwide. Using soybean cultivars carrying a Rps resistance gene is the most effective strategy for controlling this disease. We previously detected a novel Phytophthora resistance gene, RpsZS18, on chromosome 2 of the soybean cultivar Zaoshu18. The aim of the present study was to identify and finely map RpsZS18. We used 232 F2:3 families generated from a cross between Zaoshu18 (resistant) and Williams (susceptible) as the mapping population. Simple sequence repeat (SSR) markers distributed on chromosome 2 were used to map RpsZS18. First, 12 SSR markers linked with RpsZS18 were identified by linkage analyses, including two newly developed SSR markers, ZCSSR33 and ZCSSR46, that flanked the gene at distances of 0.9 and 0.5 cM, respectively. Second, PCR-based InDel markers were developed based on sequence differences between the two parents and used to further narrow down the mapping region of RpsZS18 to 71.3 kb. Third, haplotype analyses were carried out in the RpsZS18 region using 14 soybean genotypes with whole-genome resequencing. We detected six genes with unique haplotype sequences in Zaoshu18. Finally, quantitative real-time PCR assays of the six genes revealed an EF-hand calcium-binding domain containing protein encoding gene (Glyma.02g245700), a pfkB carbohydrate kinase encoding gene (Glyma.02g245800), and a gene with no functional annotation (Glyma.02g246300), are putative candidate PRR resistance genes. This study provides useful information for breeding P. sojae-resistant soybean cultivars.

18.
Diabetes Metab Syndr Obes ; 11: 357-366, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30046248

RESUMEN

BACKGROUND: To investigate hypoglycemic activity and elucidate the active composition of the fruit blueberry (Vaccinium corymbosum). METHODS: Methanol extracts of blueberry (MEB) were separated using a D101 macroporous resin column to yield quinic acid derivative (Fr.1)- and flavonoid (Fr.2)-rich fractions. The effects of the blueberry extracts on mRNA expression of GLUT-2 (glucose transporter type 2) and PPARγ (peroxisome proliferator-activated receptor-γ), as well as on the activities of PPRE (peroxisome proliferator response element) and NF-κB were analyzed in LO2 normal liver cells. Real-time PCR was used to detect the expression of GLUT-2, PPARγ, TNF-α, IL-1ß, and IL-6 mRNA. The PPRE and NF-κB activities were detected by a luciferase reporter assay. Western blotting was used to detect the levels of PPARγ, GLUT-2, and p65. The active compositions were isolated using various chromatography columns, and were analyzed by NMR. RESULTS: mRNA and protein expression of GLUT-2 and PPARγ were significantly increased upon treatment with 400 µg/mL extracts of blueberry (P<0.05). The PPRE activity was also significantly increased in a dose-dependent manner upon administration of MEB (P<0.05). Furthermore, the NF-κB activity induced by lipopolysaccharides was inhibited by MEB (P<0.05). No fraction separated from MEB exhibited PPRE activation or NF-κB inhibition activity. Blueberry extract may execute its hypoglycemic activity by stimulating expression of GLUT-2 and PPARγ, and by inhibiting the inflammatory pathway. Together, quinic acid derivatives and flavonoids may result in a synergistic effect. Fourteen phenolic acids, including eight flavonoids, four quinic acid derivatives, and two other phenolic acids, were isolated and identified, and caffeoylquinic acid derivatives and quercetin glycosides were found to be the major constituents of blueberry. CONCLUSION: Blueberry may have hypoglycemic activity that functions through synergistic effects with caffeoylquinic acid derivatives and quercetin glycosides.

19.
PLoS One ; 12(2): e0170900, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28234915

RESUMEN

To examine the effects of formononetin (FMN) on Acetaminophen (APAP)-induced liver injury in vitro and in vivo. Human non-tumor hepatic cells LO2 were pretreated with either vehicle or FMN (20, 40 µM), for 6 h, followed by incubation with or without APAP (10 mM) for 24 h. In an in vivo assay, male BALB/c mice were randomly divided into four groups: (1) control group; (2) APAP group; (3) APAP + FMN (50 mg/Kg); (4) APAP + FMN (100 mg/Kg). The mice in the control and APAP groups were pre-treated with vehicle; the other two groups were pretreated daily with FMN (50, 100 mg/Kg) orally for 7 consecutive days. After the final treatment, acute liver injury was induced in all groups, except the control group, by intraperitoneal (i.p.) injection of 300 mg/Kg APAP. In LO2 cells, APAP exposure decreased the cell viability and glutathione (GSH) content, which were both greatly restored by FMN pretreatment. Overdose of APAP increased hepatic malondialdehyde (MDA) content, serum alanine aminotransferase (ALT), and aspartate aminotransferase (AST) activity in experimental mice. Supplementation with 100 mg/Kg FMN significantly reduced APAP-induced elevated levels of MDA (1.97 ± 0.27 vs 0.55 ± 0.14 nmol/mg protein, p < 0.001), ALT (955.80 ± 209.40 vs 46.90 ± 20.40 IU/L, p < 0.001) and AST (1533.80 ± 244.80 vs 56.70 ± 28.80 IU/L, p < 0.001), and hepatic GSH level (5.54 ± 0.93 vs 8.91 ± 1.11 µmol/mg protein, p < 0.001) was significantly increased. These results were further validated by histopathology and TdT-mediated biotin-dUTP nick-endlabeling (TUNEL) staining, pretreatment with 100 mg/Kg FMN significant decreased APAP-induced hepatocellular damage and cell apoptosis (36.55 ± 3.82 vs 2.58 ± 1.80%, p < 0.001). Concomitantly, FMN stimulated the expression of Nrf2 and antioxidant gene expression in the presence of APAP. These data provide an experimental basis for the use of FMN in the treatment of patients with APAP-induced hepatotoxicity.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Isoflavonas/administración & dosificación , Factor 2 Relacionado con NF-E2/genética , Estrés Oxidativo/efectos de los fármacos , Acetaminofén/efectos adversos , Alanina Transaminasa/sangre , Animales , Antioxidantes/administración & dosificación , Apoptosis/efectos de los fármacos , Aspartato Aminotransferasas/sangre , Enfermedad Hepática Inducida por Sustancias y Drogas/sangre , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Regulación de la Expresión Génica/efectos de los fármacos , Glutatión/metabolismo , Humanos , Hígado/efectos de los fármacos , Hígado/lesiones , Hígado/patología , Malondialdehído/metabolismo , Ratones , Factor 2 Relacionado con NF-E2/biosíntesis
20.
J Agric Food Chem ; 64(28): 5621-4, 2016 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-27381890

RESUMEN

Ficus hirta, a widely consumed food by Hakka people, has been reported to show potent antifungal activity against phytopathogen Penicillium italicum. However, there is no report of chemical constituents responsible for the antifungal activity. In the current study, nine monosubstituted benzene derivatives, including three new derivatives (1-3), were isolated from the fruits of F. hirta. The structures of these isolates were elucidated on the basis of the analysis of spectroscopic data (mass spectrometry and nuclear magnetic resonance). All of the isolates were evaluated for antifungal activities against P. italicum. At an equivalent concentration, compound 1 exhibited stronger antifungal activity than that of the ethanol extract of F. hirta fruits.


Asunto(s)
Antifúngicos/química , Antifúngicos/farmacología , Derivados del Benceno/química , Derivados del Benceno/farmacología , Ficus/química , Penicillium/efectos de los fármacos , Enfermedades de las Plantas/microbiología , Frutas/química , Penicillium/crecimiento & desarrollo , Extractos Vegetales/química , Extractos Vegetales/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA