Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chemistry ; 30(39): e202400223, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38728573

RESUMEN

We proposed a new strategy for CO2 hydrogenation to prepare light olefins by introducing Zn into GaZrOx to construct ZnGaZrOx ternary oxides, which was combined with SAPO-34 to prepare a high-performance ZnGaZrOx/SAPO-34 tandem catalyst for CO2 hydrogenation to light olefins. By optimizing the Zn doping content, the ratio and mode of the two-phase composite, and the process conditions, the 3.5 %ZnGaZrOx/SAPO-34 tandem catalyst showed excellent catalytic performance and good high-temperature inhibition of the reverse water-gas shift (RWGS) reaction. The catalyst achieved 26.6 % CO2 conversion, 82.1 % C2 =-C4 = selectivity and 11.8 % light olefins yield. The ZnGaZrOx formed by introducing an appropriate amount of Zn into GaZrOx significantly enhanced the spillover H2 effect and also induced the generation of abundant oxygen vacancies to effectively promote the activation of CO2. Importantly, the RWGS reaction was also significantly suppressed at high temperatures, with the CO selectivity being only 46.1 % at 390 °C.

2.
Biotechnol Lett ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38844647

RESUMEN

Chlorimuron-ethyl is currently the primary herbicide used for chemical weed control in a soybean field. In this study, a solid microbial inoculum (corn stalk-white rot fungus (W-1)) was prepared for the remediation of farmland soil contaminated by chlorimuron-ethyl. Firstly, the preparation method of the microbial inoculum was studied. Secondly, the degradation rate of the chlorimuron-ethyl in the ground by the solid microbial inoculum is improved by optimizing the proportion of the protective agent. Then the effects of applying solid microbial inoculum, free bacteria and corn straw on the degradation rate of chlorimuron-ethyl in soil were weighed. Finally, Illumina MiSeq sequencing was used to measure the composition and diversity of bacterial and fungal communities in the ground before and after using microbial inoculum. The degradation rate of chlorimuron-ethyl in soil by solid microbial inoculum was 84.87% after 20 d using corn straw as the support, room temperature drying, 4% Ca3(PO4)2 as the protective drying agent, and 1%(w) dextrin as the ultraviolet protective agent. Inoculation of white rot fungi could significantly affect the community structure of bacteria and fungi in the soil, making the chlorimuron-ethyl degrading communities become the dominant communities and playing an essential role in the degradation of chlorimuron-ethyl. The results showed that using solid microbial inoculum was an effective way to repair farmland soil polluted by chlorimuron-ethyl.

3.
Chemistry ; 29(71): e202302569, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-37792289

RESUMEN

Lithium-rich layered oxides (LLOs, Li1.2 Mn0.54 Ni0.13 Co0.13 O2 ) are widely used as cathode materials for lithium-ion batteries due to its high specific capacity, high operating voltage and low cost. However, the LLOs are faced with rapid decay of charge/discharge capacity and voltage, as well as interface side reactions, which limit its electrochemical performance. Herein, the dual strategies of sulfite/sodium ion co-doping and lithium carbonate coating were used to improve it. It founds that modified LLOs achieve 88.74 % initial coulomb efficiency, 295.3 mAh g-1 first turn discharge capacity, in addition to 216.9 mAh g-1 at 1 C, and 87.23 % capacity retention after 100 cycles. Mechanism research indicated that the excellent electrochemical performance benefits from the doping of both Na+ and SO3 2- , and it could significantly reduce the migration energy barrier of Li+ and promote Li+ migration. Meanwhile, anion and cation are co-doped greatly reduces the band gap of LLOs and increase its electrical conductivity, and its binding effect on Li+ is weakened, making it easier for Li+ to shuttle through the material. In addition, the lithium carbonate coating significantly inhibits the occurrence of interfacial side reactions of LLOs. This work provides a theoretical basis and practical guidance for the further development of LLOs with higher electrochemical performance.

4.
Int J Mol Sci ; 24(1)2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36613516

RESUMEN

Unconventional heavy oil ores (UHO) have been considered an important part of petroleum resources and an alternative source of chemicals and energy supply. Due to the participation of water and extractants, oil-solid separation (OSS) and oil-water separation (OWS) processes are inevitable in the industrial separation processes of UHO. Therefore, this critical review systematically reviews the basic theories of OSS and OWS, including solid wettability, contact angle, oil-solid interactions, structural characteristics of natural surfactants and interface characteristics of interfacially active asphaltene film. With the basic theories in mind, the corresponding OSS and OWS mechanisms are discussed. Finally, the present challenges and future research considerations are touched on to provide insights and theoretical fundamentals for OSS and OWS. Additionally, this critical review might even be useful for the provision of a framework of research prospects to guide future research directions in laboratories and industries that focus on the OSS and OWS processes in this important heavy oil production field.


Asunto(s)
Petróleo , Humectabilidad , Agua/química
5.
Plant Physiol ; 183(4): 1883-1897, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32503901

RESUMEN

Vivipary, wherein seeds germinate prior to dispersal while still associated with the maternal plant, is an adaptation to extreme environments. It is normally inhibited by the establishment of dormancy. The genetic framework of vivipary has been well studied; however, the role of epigenetics in vivipary remains unknown. Here, we report that silencing of METHYLTRANSFERASE1 (SlMET1) promoted precocious seed germination and seedling growth within the tomato (Solanum lycopersicum) epimutant Colorless non-ripening (Cnr) fruits. This was associated with decreases in abscisic acid concentration and levels of mRNA encoding 9-cis-epoxycarotenoid-dioxygenase (SlNCED), which is involved in abscisic acid biosynthesis. Differentially methylated regions were identified in promoters of differentially expressed genes, including SlNCED SlNCED knockdown also induced viviparous seedling growth in Cnr fruits. Strikingly, Cnr ripening reversion suppressed vivipary. Moreover, neither SlMET1/SlNCED-virus-induced gene silencing nor transgenic SlMET1-RNA interference produced vivipary in wild-type tomatoes; the latter affected leaf architecture, arrested flowering, and repressed seed development. Thus, a dual pathway in ripening and SlMET1-mediated epigenetics coordinates the blockage of seed vivipary.


Asunto(s)
Frutas/enzimología , Frutas/metabolismo , Solanum lycopersicum/enzimología , Solanum lycopersicum/metabolismo , Dioxigenasas/metabolismo , Epigénesis Genética/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/metabolismo , Regiones Promotoras Genéticas/genética
6.
Toxics ; 12(6)2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38922114

RESUMEN

Mesotrione (MES) is a new environmental pollutant. Some reports have indicated that microbial enzymes could be utilized for MES degradation. Laccase is a green biocatalyst whose potential use in environmental pollutant detoxification has been considered limited due to its poor stability and reusability. However, these issues may be addressed using enzyme immobilization. In the present study, we sought to optimize conditions for laccase immobilization, to analyze and characterize the characteristics of the immobilized laccase, and to compare its enzymatic properties to those of free laccase. In addition, we studied the ability of laccase to degrade MES, and analyzed the metabolic pathway of MES degradation by immobilized laccase. The results demonstrated that granular zinc oxide material (G-ZnO) was successfully used as the carrier for immobilization. G-ZnO@Lac demonstrated the highest recovery of enzyme activity and exhibited significantly improved stability compared with free laccase. Storage stability was also significantly improved, with the relative enzyme activity of G-ZnO@Lac remaining at about 54% after 28 days of storage (compared with only 12% for free laccase). The optimal conditions for the degradation of MES by G-ZnO@Lac were found to be 10 mg, 6 h, 30 °C, and pH 4; under these conditions, a degradation rate of 73.25% was attained. The findings of this study provide a theoretical reference for the laccase treatment of 4-hy-droxyphenylpyruvate dioxygenase (HPPD)-inhibiting herbicide contamination.

7.
J Colloid Interface Sci ; 652(Pt B): 1984-1993, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37690306

RESUMEN

Cerium(IV) oxide (CeO2)-based materials are effective catalysts for the synthesis of dimethyl carbonate (DMC) from carbon dioxide (CO2) and methanol (CH3OH). Herein, 5% Y-CeO2 was synthesized by the co-precipitation method. It forms a solid solution structure, which leads to the highest concentration of oxygen vacancies. The Y-VO-Ce active site created by Y3+ doping enhances the adsorption and activation of CO2 based on moderately passivating CH3OH adsorption. Consequently, 5% Y-CeO2 exhibited the highest CH3OH conversion rate of 0.8% and a DMC yield of 15 mmol⋅(g cat)-1, which is 1.4 times of pure CeO2 (reacting in a stainless-steel autoclave at 140 °C with a stirring speed of 1000 r⋅min-1 and an initial pressure of 3.0 MPa for 2 h). An adsorption test and in situ diffuse reflectance infrared Fourier transform spectroscopy showed that 5% Y-CeO2 could effectively inhibit the formation of triple-bonded methoxy species, and promote the formation of bidentate carbonate and bridged methoxy intermediates, which is conducive to the improvement of reaction activity.

8.
Nanomaterials (Basel) ; 12(11)2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35683659

RESUMEN

In this paper, the molecular sieve NaZSM-5 was modified with zirconium dioxide (ZrO2) by a hydrothermal coating process and other methods. By comparing the effects of the crystal phase structure of ZrO2 and the compositing method on the physicochemical properties and catalytic performance of the obtained composites, the structure-performance relationship of these composite catalysts was revealed. The results indicate that in the hydrothermal system used for the preparation of NaZSM-5, Zr4+ is more likely to dissolve from m-ZrO2 than from t-ZrO2, which can subsequently enter the molecular sieve, causing a greater degree of desiliconization of the framework. The larger specific surface area (360 m2/g) and pore volume (0.52 cm3/g) of the m-ZrO2/NaZSM-5 composite catalyst increase the exposure of its abundant acidic (0.078 mmol/g) and basic (0.081 mmol/g) active centers compared with other composites. Therefore, this catalyst exhibits a shorter induction period and better catalytic performance. Furthermore, compared with the impregnation method and mechanochemical method, the hydrothermal coating method produces a greater variety of acid-base active centers in the composite catalyst due to the hydrothermal modifying effect.

9.
Nanomaterials (Basel) ; 12(12)2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35745423

RESUMEN

An Li1.3Al0.3SnxTi1.7-x(PO4)3 (LATP-xSn) ceramic solid electrolyte was prepared by Sn doping via a solid phase method. The results showed that adding an Sn dopant with a larger ionic radius in a concentration of x = 0.35 enabled one to equivalently substitute Ti sites in the LATP crystal structure to the maximum extent. The uniform Sn doping could produce a stable LATP structure with small grain size and improved relative density. The lattice distortion induced by Sn doping also modified the transport channels of Li ions, which promoted the increase of ionic conductivity from 5.05 × 10-5 to 4.71 × 10-4 S/cm at room temperature. The SPE/LATP-0.35Sn/SPE composite solid electrolyte with a sandwich structure was prepared by coating, which had a high ionic conductivity of 5.9 × 10-5 S/cm at room temperature, a wide electrochemical window of 4.66 V vs. Li/Li+, and a good lithium-ion migration number of 0.38. The Li||Li symmetric battery test results revealed that the composite solid electrolyte could stably perform for 500 h at 60 °C under the current density of 0.2 mA/cm2, indicating its good interface stability with metallic lithium. Moreover, the analysis of the all-solid-state LiFePO4||SPE/LATP-0.35Sn/SPE||Li battery showed that the composite solid electrolyte had good cycling stability and rate performance. Under the conditions of 60 °C and 0.2 C, stable accumulation up to 200 cycles was achieved at a capacity retention ratio of 90.5% and a coulombic efficiency of about 100% after cycling test.

10.
ACS Appl Mater Interfaces ; 14(16): 18550-18560, 2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35412790

RESUMEN

The development of catalysts with high selectivity, good catalytic activity, and excellent cycle performance is of significance for the application of formic acid (HCOOH, FA) as a hydrogen support. Herein, Pd is deposited on a series of N-doped carbons, which are prepared by cocarbonization of N-containing zeolite imidazole frameworks (ZIF-8) and other N/C sources (melamine, xylitol, urea, and glucose), for hydrogen generation from FA. The results demonstrate that the introduction of a secondary N/C source further affects the catalytic performance of Pd by adjusting the morphology, specific surface area, N content, and type of carbon. The effects of N atoms and the favorable reaction pathways of FA dehydrogenation were revealed by theoretical calculation. This work will improve the understanding of N doping on the decomposition mechanism of FA and provide a new approach for the rational design of metal-N-C materials.

11.
Nanomaterials (Basel) ; 11(11)2021 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-34835792

RESUMEN

Formic acid (FA) is found to be a potential candidate for the storage of hydrogen. For dehydrogenation of FA, the supports of our catalysts were acquired by conducting ZnCl2 treatment and carbonation for biomass waste. The texture and surface properties significantly affected the size and dispersion of Pd and its interaction with the support so as to cause the superior catalytic performance of catalysts. Microporous carbon obtained by carbonization of ZnCl2 activated peanut shells (CPS-ZnCl2) possessing surface areas of 629 m2·g-1 and a micropore rate of 73.5%. For ZnCl2 activated melon seed (CMS-ZnCl2), the surface area and micropore rate increased to 1081 m2·g-1 and 80.0%, respectively. In addition, the introduction of ZnCl2 also caused the increase in surface O content and reduced the acidity of the catalyst. The results represented that CMS-ZnCl2 with uniform honeycomb morphology displayed the best properties, and the as-prepared Pd/CMS-ZnCl2 catalyst afforded 100% hydrogen selectivity as well as excellent catalytic activity with an initial high turnover number (TON) value of 28.3 at 30 °C and 100.1 at 60 °C.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA