Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 451
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(6): e2221637120, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36716376

RESUMEN

Lipids establish the specialized thylakoid membrane of chloroplast in eukaryotic photosynthetic organisms, while the molecular basis of lipid transfer from other organelles to chloroplast remains further elucidation. Here we revealed the structural basis of Arabidopsis Sec14 homology proteins AtSFH5 and AtSFH7 in transferring phosphatidic acid (PA) from endoplasmic reticulum (ER) to chloroplast, and whose function in regulating the lipid composition of chloroplast and thylakoid development. AtSFH5 and AtSFH7 localize at both ER and chloroplast, whose deficiency resulted in an abnormal chloroplast structure and a decreased thickness of stacked thylakoid membranes. We demonstrated that AtSFH5, but not yeast and human Sec14 proteins, could specifically recognize and transfer PA in vitro. Crystal structures of the AtSFH5-Sec14 domain in complex with L-α-phosphatidic acid (L-α-PA) and 1,2-dipalmitoyl-sn-glycero-3-phosphate (DPPA) revealed that two PA ligands nestled in the central cavity with different configurations, elucidating the specific binding mode of PA to AtSFH5, different from the reported phosphatidylethanolamine (PE)/phosphatidylcholine (PC)/phosphatidylinositol (PI) binding modes. Quantitative lipidomic analysis of chloroplast lipids showed that PA and monogalactosyldiacylglycerol (MGDG), particularly the C18 fatty acids at sn-2 position in MGDG were significantly decreased, indicating a disrupted ER-to-plastid (chloroplast) lipid transfer, under deficiency of AtSFH5 and AtSFH7. Our studies identified the role and elucidated the structural basis of plant SFH proteins in transferring PA between organelles, and suggested a model for ER-chloroplast interorganelle phospholipid transport from inherent ER to chloroplast derived from endosymbiosis of a cyanobacteriumproviding a mechanism involved in the adaptive evolution of cellular plastids.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Cloroplastos , Ácidos Fosfatidicos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , Ácidos Fosfatidicos/metabolismo , Tilacoides/metabolismo
2.
Ecol Lett ; 27(6): e14446, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38814284

RESUMEN

Grime's competitive, stress-tolerant, ruderal (CSR) theory predicts a shift in plant communities from ruderal to stress-tolerant strategies during secondary succession. However, this fundamental tenet lacks empirical validation using long-term continuous successional data. Utilizing a 60-year longitudinal data of old-field succession, we investigated the community-level dynamics of plant strategies over time. Our findings reveal that while plant communities generally transitioned from ruderal to stress-tolerant strategies during succession, initial abandonment conditions crucially shaped early successional strategies, leading to varied strategy trajectories across different fields. Furthermore, we found a notable divergence in the CSR strategies of alien and native species over succession. Initially, alien and native species exhibited similar ruderal strategies, but in later stages, alien species exhibited higher ruderal and lower stress tolerance compared to native species. Overall, our findings underscore the applicability of Grime's predictions regarding temporal shifts in CSR strategies depending on both initial community conditions and species origin.


Asunto(s)
Especies Introducidas , Plantas , Fenómenos Fisiológicos de las Plantas , Estrés Fisiológico , Ecosistema , Modelos Biológicos , Desarrollo de la Planta
3.
J Am Chem Soc ; 146(22): 15576-15586, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38753821

RESUMEN

Selective synthesis of chiral bridged (hetero)bicyclic scaffolds via asymmetric C-H activation constitutes substantial challenges due to the multiple reactivities of strained bicyclic structures. Herein, we develop the domino transformations through an unprecedented cobalt-catalyzed enantioselective C-H activation/nucleophilic [3 + 2] annulation with symmetrical bicyclic alkenes. The methods offer straightforward access to a wide range of chiral molecules bearing [2.2.1]-bridged bicyclic cores with four and five consecutive stereocenters in a single step. Two elaborate salicyloxazoline (Salox) ligands were synthesized based on the rational design and mechanistic understanding. The well-defined chiral pockets generated from asymmetric coordination around the trivalent cobalt catalyst direct the orientation of bicyclic alkenes, leading to excellent enantioselectivity.

4.
Gastroenterology ; 165(3): 629-646, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37247644

RESUMEN

BACKGROUND & AIMS: Hyperactivation of ribosome biogenesis leads to hepatocyte transformation and plays pivotal roles in hepatocellular carcinoma (HCC) development. We aimed to identify critical ribosome biogenesis proteins that are overexpressed and crucial in HCC progression. METHODS: HEAT repeat containing 1 (HEATR1) expression and clinical correlations were analyzed using The Cancer Genome Atlas and Gene Expression Omnibus databases and further evaluated by immunohistochemical analysis of an HCC tissue microarray. Gene expression was knocked down by small interfering RNA. HEATR1-knockdown cells were subjected to viability, cell cycle, and apoptosis assays and used to establish subcutaneous and orthotopic tumor models. Chromatin immunoprecipitation and quantitative polymerase chain reaction were performed to detect the association of candidate proteins with specific DNA sequences. Endogenous coimmunoprecipitation combined with mass spectrometry was used to identify protein interactions. We performed immunoblot and immunofluorescence assays to detect and localize proteins in cells. The nucleolus ultrastructure was detected by transmission electron microscopy. Click-iT (Thermo Fisher Scientific) RNA imaging and puromycin incorporation assays were used to measure nascent ribosomal RNA and protein synthesis, respectively. Proteasome activity, 20S proteasome foci formation, and protein stability were evaluated in HEATR1-knockdown HCC cells. RESULTS: HEATR1 was the most up-regulated gene in a set of ribosome biogenesis mediators in HCC samples. High expression of HEATR1 was associated with poor survival and malignant clinicopathologic features in patients with HCC and contributed to HCC growth in vitro and in vivo. HEATR1 expression was regulated by the transcription factor specificity protein 1, which can be activated by insulin-like growth factor 1-mammalian target of rapamycin complex 1 signaling in HCC cells. HEATR1 localized predominantly in the nucleolus, bound to ribosomal DNA, and was associated with RNA polymerase I transcription/processing factors. Knockdown of HEATR1 disrupted ribosomal RNA biogenesis and impaired nascent protein synthesis, leading to reduced cytoplasmic proteasome activity and inhibitory-κB/nuclear factor-κB signaling. Moreover, HEATR1 knockdown induced nucleolar stress with increased nuclear proteasome activity and inactivation of the nucleophosmin 1-MYC axis. CONCLUSIONS: Our study revealed that HEATR1 is up-regulated by insulin-like growth factor 1-mammalian target of rapamycin complex 1-specificity protein 1 signaling in HCC and functions as a crucial regulator of ribosome biogenesis and proteome homeostasis to promote HCC development.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Homeostasis , Calor , Factor I del Crecimiento Similar a la Insulina/genética , Neoplasias Hepáticas/patología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Proteoma/metabolismo , Ribosomas/metabolismo , Ribosomas/patología , ARN Ribosómico/genética , ARN Ribosómico/metabolismo
5.
Biochem Biophys Res Commun ; 733: 150436, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39053102

RESUMEN

Hepatic ischemia-reperfusion injury (IRI) is a major cause of liver damage during hepatic resection, transplantation, and other surgical procedures, often leading to graft failure and liver dysfunction. Recent studies have identified ferroptosis, a form of regulated cell death characterized by iron-dependent lipid peroxidation, as a key contributor to IRI. In this study, we investigated the protective effects of Ticlopidine, a thienopyridine compound and platelet aggregation inhibitor, on hepatic IRI. Using a C57BL/6J mouse model, we demonstrated that prophylactic Ticlopidine treatment significantly reduced necrotic and fibrotic areas in liver tissues, as well as serum levels of alanine transaminase (ALT) and aspartate aminotransferase (AST). Prussian Blue staining revealed that Ticlopidine pretreatment decreased iron accumulation in hepatic tissues, whereas markers of lipid peroxidation (malondialdehyde and 4-hydroxynonenal) and ferroptosis (PTGS2) were significantly downregulated. Additionally, Ticlopidine ameliorated inflammatory infiltration as indicated by reduced Gr-1 staining. In vitro, Ticlopidine dose-dependently inhibited ferroptosis induced by various inducers in liver cancer cell lines HUH7 and fibrosarcoma cells HT1080. The protective effects involved partial rescue of lipid peroxidation, significant reduction of ferrous iron levels, and strong protection against mitochondrial damage. These findings suggested that Ticlopidine acts as a broad-spectrum ferroptosis inhibitor, offering a promising therapeutic approach for protecting the liver against IRI.

6.
Small ; : e2406206, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39268781

RESUMEN

Heart failure (HF) represents a cardiovascular disease that significantly threatens global well-being and quality of life. Electroactive nanomaterials, characterized by their distinctive physical and chemical properties, emerge as promising candidates for HF prevention and management. This review comprehensively examines electroactive nanomaterials and their applications in HF intervention. It presents the definition, classification, and intrinsic characteristics of conductive, piezoelectric, and triboelectric nanomaterials, emphasizing their mechanical robustness, electrical conductivity, and piezoelectric coefficients. The review elucidates their applications and mechanisms: 1) early detection and diagnosis, employing nanomaterial-based sensors for real-time cardiac health monitoring; 2) cardiac tissue repair and regeneration, providing mechanical, chemical, and electrical stimuli for tissue restoration; 3) localized administration of bioactive biomolecules, genes, or pharmacotherapeutic agents, using nanomaterials as advanced drug delivery systems; and 4) electrical stimulation therapies, leveraging their properties for innovative pacemaker and neurostimulation technologies. Challenges in clinical translation, such as biocompatibility, stability, and scalability, are discussed, along with future prospects and potential innovations, including multifunctional and stimuli-responsive nanomaterials for precise HF therapies. This review encapsulates current research and future directions concerning the use of electroactive nanomaterials in HF prevention and management, highlighting their potential to innovating in cardiovascular medicine.

7.
New Phytol ; 243(6): 2501-2511, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38798233

RESUMEN

Gene silencing is crucial in crop breeding for desired trait development. RNA interference (RNAi) has been used widely but is limited by ectopic expression of transgenes and genetic instability. Introducing an upstream start codon (uATG) into the 5'untranslated region (5'UTR) of a target gene may 'silence' the target gene by inhibiting protein translation from the primary start codon (pATG). Here, we report an efficient gene silencing method by introducing a tailor-designed uATG-containing element (ATGE) into the 5'UTR of genes in plants, occupying the original start site to act as a new pATG. Using base editing to introduce new uATGs failed to silence two of the tested three rice genes, indicating complex regulatory mechanisms. Precisely inserting an ATGE adjacent to pATG achieved significant target protein downregulation. Through extensive optimization, we demonstrated this strategy substantially and consistently downregulated target protein expression. By designing a bidirectional multifunctional ATGE4, we enabled tunable knockdown from 19% to 89% and observed expected phenotypes. Introducing ATGE into Waxy, which regulates starch synthesis, generated grains with lower amylose, revealing the value for crop breeding. Together, we have developed a programmable and robust method to knock down gene expression in plants, with potential for biological mechanism exploration and crop enhancement.


Asunto(s)
Edición Génica , Silenciador del Gen , Oryza , Edición Génica/métodos , Oryza/genética , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente , Sitios Genéticos , Genoma de Planta , Regiones no Traducidas 5'/genética , Genes de Plantas , Secuencia de Bases , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fenotipo
8.
Opt Express ; 32(8): 13208-13223, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38859297

RESUMEN

Reading with a bit of yellowish or greenish paper, as compared to white paper, is thought to be more comfortable and friendly, and can help decrease eye fatigue to some degree. In this work, we try to map the light of different colors on a given paper within a region of interest to alter the colors presented by the paper and consequently influence the reading experience. We conducted an ergonomic experiment to study the comfort and clarity under consistent illuminance levels. We adopted 6 color series(red, yellow, green, cyan, blue, and magenta), 5 chroma levels(0, 10, 20, 30, 40), and 4 types of paper with the same hue(yellow) but different lightness(the white, light yellow, yellow, and dark yellow), and conducted pairwise selection experiments within each light color series. Results show that white and low chroma (≈10) color characteristics contribute to comfort, while higher chroma blue(30∼40) color benefits clarity. Referring to white, low chroma greenish and yellowish color characteristics are preferred in terms of comfort and clarity. This work proposes the spectrum mapping technology to endow the paper with new color effects and verifies that although spectrum compositions might differ, people's preferences and comfort perception are consistent with the same object color.

9.
Reprod Biomed Online ; 49(1): 103856, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38657291

RESUMEN

RESEARCH QUESTION: Does the observed correlation between dyslipidaemia and endometriosis indicate a bidirectional causal association? DESIGN: Bidirectional Mendelian randomization was used to investigate the causal association between lipid traits and endometriosis. Drug-target Mendelian randomization was used to explore potential drug-target genes for managing endometriosis. In cases where lipid-mediated effects via specific drug targets were significant, aggregate analyses, such as summary-data-based Mendelian randomization and colocalization methods, were introduced to validate the outcomes. Mediation analyses supplemented these evaluations. RESULTS: The bidirectional Mendelian randomization results suggested that genetically predicted triglyceride (OR 1.15, 95% CI 1.08-1.23), high-density lipoprotein cholesterol (OR 0.87, 95% CI 0.81-0.94), low-density lipoprotein cholesterol (OR 1.20, 95% CI 1.06-1.34) and apolipoprotein A (OR 0.90, 95% CI 0.83-0.96) concentrations were causally associated with endometriosis. Reverse Mendelian randomization results revealed that genetically proxied endometriosis was causally associated with triglyceride concentration (OR 1.02, 95% CI 1.01-1.02). In drug-target Mendelian randomization, genetic mimicry in proprotein convertase subtilisin/kexin type 9 (PCSK9) (OR 1.40, 95% CI 1.13-1.72), apolipoprotein B (APOB) (OR 1.49, 95% CI 1.21-1.86) and angiopoietin-related protein 3 (ANGPTL3) (OR 1.57, 95% CI 1.14-2.16) was significantly associated with the risk of endometriosis stages 1-2. CONCLUSION: There is a potential bidirectional causal association between endometriosis and dyslipidaemia. Genetic mimicry of PCSK9, APOB and ANGPTL3 is associated with the risk of early-stage endometriosis. The development of lipid-lowering drugs to treat endometriosis is of potential clinical interest.


Asunto(s)
Endometriosis , Análisis de la Aleatorización Mendeliana , Humanos , Femenino , Endometriosis/genética , Endometriosis/tratamiento farmacológico , Dislipidemias/genética , Dislipidemias/tratamiento farmacológico , Dislipidemias/epidemiología , Hipolipemiantes/uso terapéutico , Proproteína Convertasa 9/genética , Lípidos/sangre , Triglicéridos/sangre , Predisposición Genética a la Enfermedad
10.
Cell Mol Biol (Noisy-le-grand) ; 70(4): 107-112, 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38678615

RESUMEN

Parkinson's disease (PD) is defined as a progressive neurodegenerative disease in middle-aged and elderly people. The therapeutic effect of ω-3 PUFAs in several neurodegenerative diseases has been well recognized. Nevertheless, whether nutrition supplementing ω-3 PUFAs exerts a neuroprotective role in PD remains elusive. Bioinformatics revealed 2D chemical structural formula of three components. Mice received indicated treatment with saline, MPTP or ω-3 PUFAs according to grouping. Behavioral function of mice was measured through motor tests such as rearing, akinesia, and rotarod tests. OFT test measured anxiety-like behaviors of mice. Western blotting and TUNEL staining measured dopaminergic fibers and neurons of mice. Western blotting measured inflammation and apoptosis-related protein levels in mouse tissue. FACS measured iTreg cell proportion in colon and brain tissues of mice. ω-3 PUFAs repaired MPTP-stimulated motor function damage in PD mice. ω-3 PUFAs mitigated MPTP-stimulated comorbid anxiety in PD mice. ω-3 PUFAs relieved MPTP-stimulated deficits of dopaminergic fibers and neurons in PD mice. ω-3 PUFAs repressed MPTP-stimulated inflammation and apoptosis pathway activation in PD mice. ω-3 PUFAs repaired MPTP-stimulated immune function damage in PD mice. ω-3 PUFAs exert a protective role in PD mice through alleviating motor function impairment and neuroinflammation by increasing intestinal inducible Treg cells, which may provide a new direction for seeking targeted therapy plans for PD in humans.


Asunto(s)
Modelos Animales de Enfermedad , Ácidos Grasos Omega-3 , Ratones Endogámicos C57BL , Enfermedad de Parkinson , Linfocitos T Reguladores , Animales , Ácidos Grasos Omega-3/farmacología , Ácidos Grasos Omega-3/uso terapéutico , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/metabolismo , Ratones , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Masculino , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Apoptosis/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Intestinos/efectos de los fármacos , Intestinos/patología , Conducta Animal/efectos de los fármacos , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina , Inflamación/patología , Inflamación/tratamiento farmacológico , Inflamación/metabolismo
11.
Environ Res ; 242: 117817, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38043892

RESUMEN

In this study, lanthanum carbonate (LC) was selected as a capping agent to examine its effectiveness in immobilizing sediment internal phosphorus (P), arsenic (As) and tungsten (W). With a 180-day incubation experiment, it was determined that LC capping efficiently reduced the concentrations of soluble reactive P (SRP), soluble As and soluble W in pore water, with the highest reduction rate of 83.39%, 56.21% and 68.52%, respectively. The primary mechanisms involved in the adsorption of P, As and W by LC were precipitation reactions and ligand exchange. Additionally, P, As and W were immobilized by LC capping through the transformation of fractions from mobile and less stable forms to more stable forms. Furthermore, LC capping led to an increase in the Eh value, which promoted the oxidation of soluble Fe (Ⅱ) and soluble Mn. The significantly positive correlation and synchronized variations observed between SRP, soluble As, soluble W, and soluble Fe (II) indicated that the effects of LC on Fe redox played a crucial role in immobilizing sediment internal P, As and W. However, the oxidation of Mn, promoted by LC, played a more significant role in immobilizing sediment internal As than P and W. These effects resulted in LC capping achieving the highest reduction of SRP, soluble As and soluble W flux at 145.22, 22.19, and 0.58 µg m-2d-1. It is of note that LC capping did not lead to an elevated release hazard of Co, Ni, Cu, and Pb, barring Cd. Besides, LC capping did not modify the entire microbial communities in the sediment, but altered the proportional representation of specific microorganisms. Generally, LC has potential as a capping agent capable of simultaneously immobilizing sediment internal P, As and W.


Asunto(s)
Arsénico , Lantano , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Tungsteno , Fósforo , Sedimentos Geológicos , Lagos
12.
Sensors (Basel) ; 24(3)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38339473

RESUMEN

In order to address the challenges of low recognition accuracy and the difficulty in effective diagnosis in traditional converter transformer voiceprint fault diagnosis, a novel method is proposed in this article. This approach takes account of the impact of load factors, utilizes a multi-strategy improved Mel-Frequency Spectrum Coefficient (MFCC) for voiceprint signal feature extraction, and combines it with a temporal convolutional network for fault diagnosis. Firstly, it improves the hunter-prey optimizer (HPO) as a parameter optimization algorithm and adopts IHPO combined with variational mode decomposition (VMD) to achieve denoising of voiceprint signals. Secondly, the preprocessed voiceprint signal is combined with Mel filters through the Stockwell transform. To adapt to the stationary characteristics of the voiceprint signal, the processed features undergo further mid-temporal processing, ultimately resulting in the implementation of a multi-strategy improved MFCC for voiceprint signal feature extraction. Simultaneously, load signal segmentation is introduced for the diagnostic intervals, forming a joint feature vector. Finally, by using the Mish activation function to improve the temporal convolutional network, the IHPO-ITCN is proposed to adaptively optimize the size of convolutional kernels and the number of hidden layers and construct a transformer fault diagnosis model. By constructing multiple sets of comparison tests through specific examples and comparing them with the traditional voiceprint diagnostic model, our results show that the model proposed in this paper has a fault recognition accuracy as high as 99%. The recognition accuracy was significantly improved and the training speed also shows superior performance, which can be effectively used in the field of multiple fault diagnosis of converter transformers.

13.
Int J Mol Sci ; 25(11)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38892221

RESUMEN

Chronic kidney disease (CKD) presents a significant global health challenge, characterized by complex pathophysiology. This study utilized a multi-omic approach, integrating genomic data from the CKDGen consortium alongside transcriptomic, metabolomic, and proteomic data to elucidate the genetic underpinnings and identify therapeutic targets for CKD and kidney function. We employed a range of analytical methods including cross-tissue transcriptome-wide association studies (TWASs), Mendelian randomization (MR), summary-based MR (SMR), and molecular docking. These analyses collectively identified 146 cross-tissue genetic associations with CKD and kidney function. Key Golgi apparatus-related genes (GARGs) and 41 potential drug targets were highlighted, with MAP3K11 emerging as a significant gene from the TWAS and MR data, underscoring its potential as a therapeutic target. Capsaicin displayed promising drug-target interactions in molecular docking analyses. Additionally, metabolome- and proteome-wide MR (PWMR) analyses revealed 33 unique metabolites and critical inflammatory proteins such as FGF5 that are significantly linked to and colocalized with CKD and kidney function. These insights deepen our understanding of CKD pathogenesis and highlight novel targets for treatment and prevention.


Asunto(s)
Simulación del Acoplamiento Molecular , Insuficiencia Renal Crónica , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/metabolismo , Insuficiencia Renal Crónica/tratamiento farmacológico , Humanos , Estudio de Asociación del Genoma Completo , Riñón/metabolismo , Riñón/patología , Transcriptoma , Proteómica/métodos , Análisis de la Aleatorización Mendeliana , Predisposición Genética a la Enfermedad , Metabolómica/métodos , Proteoma/metabolismo , Metaboloma , Multiómica
14.
Int J Mol Sci ; 25(16)2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39201712

RESUMEN

Nitrogen (N) is essential for sugar beet (Beta vulgaris L.), a highly N-demanding sugar crop. This study investigated the morphological, subcellular, and microRNA-regulated responses of sugar beet roots to low N (LN) stress (0.5 mmol/L N) to better understand the N perception, uptake, and utilization in this species. The results showed that LN led to decreased dry weight of roots, N accumulation, and N dry matter production efficiency, along with damage to cell walls and membranes and a reduction in organelle numbers (particularly mitochondria). Meanwhile, there was an increase in root length (7.2%) and branch numbers (29.2%) and a decrease in root surface area (6.14%) and root volume (6.23%) in sugar beet after 7 d of LN exposure compared to the control (5 mmol/L N). Transcriptomics analysis was confirmed by qRT-PCR for 6 randomly selected microRNAs, and we identified 22 differentially expressed microRNAs (DEMs) in beet root under LN treatment. They were primarily enriched in functions related to binding (1125), ion binding (641), intracellular (437) and intracellular parts (428), and organelles (350) and associated with starch and sucrose metabolism, tyrosine metabolism, pyrimidine metabolism, amino sugar and nucleotide sugar metabolism, and isoquinoline alkaloid biosynthesis, as indicated by the GO and KEGG analyses. Among them, the upregulated miR156a, with conserved sequences, was identified as a key DEM that potentially targets and regulates squamosa promoter-binding-like proteins (SPLs, 104889216 and 104897537) through the microRNA-mRNA network. Overexpression of miR156a (MIR) promoted root growth in transgenic Arabidopsis, increasing the length, surface area, and volume. In contrast, silencing miR156a (STTM) had the opposite effect. Notably, the fresh root weight decreased by 45.6% in STTM lines, while it increased by 27.4% in MIR lines, compared to the wild type (WT). It can be inferred that microRNAs, especially miR156, play crucial roles in sugar beet root's development and acclimation to LN conditions. They likely facilitate active responses to N deficiency through network regulation, enabling beet roots to take up nutrients from the environment and sustain their vital life processes.


Asunto(s)
Beta vulgaris , Regulación de la Expresión Génica de las Plantas , MicroARNs , Nitrógeno , Raíces de Plantas , Beta vulgaris/genética , Beta vulgaris/crecimiento & desarrollo , Beta vulgaris/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Nitrógeno/metabolismo , Nitrógeno/deficiencia , Aclimatación/genética , Perfilación de la Expresión Génica
15.
Pak J Med Sci ; 40(8): 1791-1796, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39281243

RESUMEN

Objective: To compare the clinical effects of applying a 3D-printed ACT titanium trabecular intervertebral fusion cage and a Polyetheretherketone (PEEK) cage in posterior lumbar interbody fusion (PLIF). Methods: This was a clinical comparative study. Forty patients with degenerative lumbar diseases admitted at The Second People's Hospital of Dalian from January 2020 to December 2021 were selected and divided into an observation group (3D cage) and a control group (PEEK cage) using the random number table method, with each group of 20 cases. The visual analogue scale (VAS) scores, Japanese Orthopaedic Association (JOA) scores, Cobb angles at fusion segments, intervertebral height and intervertebral fusion situations of the patients between the groups were compared. Results: No significant differences were found in their operation time, intraoperative blood losses and operation related complications(p>0.05). In terms of postoperative VAS and JOA scores in both groups, they are all significantly improved compared with those before the operation, and their differences are also statistically significant(p<0.05). However, no statistical significance exists in inter-group differences(p>0.05). Postoperative Cobb angles and intervertebral height of patients in both groups are considerably bettered compared with those before the operation. Their differences show statistical significance(p<0.05), while inter-group differences are proved to be not statistically significant(p>0.05). Conclusions: Applying a 3D-printed ACT titanium trabecular intervertebral fusion cage or PEEK cage in PLIF has the potential to improve clinical symptoms of patients with degenerative lumbar diseases, and restore the Cobb angle and intervertebral height. 3D-printed ACT titanium trabecular intervertebral fusion cage can accelerate intervertebral fusion without increasing operation related complications.

16.
Angew Chem Int Ed Engl ; 63(10): e202318803, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38205884

RESUMEN

Transition metal-catalyzed enantioselective C-H carbonylation with carbon monoxide, an essential and easily available C1 feedstock, remains challenging. Here, we disclosed an unprecedented enantioselective C-H carbonylation catalyzed by inexpensive and readily available cobalt(II) salt. The reactions proceed efficiently through desymmetrization, kinetic resolution, and parallel kinetic resolution, affording a broad range of chiral isoindolinones in good yields with excellent enantioselectivities (up to 92 % yield and 99 % ee). The synthetic potential of this method was demonstrated by asymmetric synthesis of biological active compounds, such as (S)-PD172938 and (S)-Pazinaclone. The resulting chiral isoindolinones also serve as chiral ligands in cobalt-catalyzed enantioselective C-H annulation with alkynes to construct phosphorus stereocenter.

17.
Angew Chem Int Ed Engl ; : e202412459, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39261278

RESUMEN

Inherently chiral calixarenes have garnered significant attention due to their distinctive properties, yet the development of efficient catalytic asymmetric synthesis methods remains a critical challenge. Herein, we report the asymmetric synthesis of calix[4]arenes featuring inherent or both inherent and axial chirality via a cobalt-catalyzed C-H activation/annulation strategy in high yield with excellent enantio- and diastereoselectivity (up to > 99% ee and > 20:1 dr). Electrooxidation was also suitable for this transformation to obviate the sacrificial metal oxidants, underscoring the environmentally friendly potential of this approach. A key octahedral cobaltacycle intermediate was synthesized and characterized, providing valuable insights into the mode of enantio- and diastereocontrol of this protocol. Noteworthy photoluminescence quantum yields of up to 0.94 were measured, underscoring the potential of these compounds in the domain of organic fluorescent materials.

18.
Angew Chem Int Ed Engl ; : e202407640, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898602

RESUMEN

Photocatalysis holds a pivotal position in modern organic synthesis, capable of inducing novel reactivities under mild and environmentally friendly reaction conditions. However, the merger of photocatalysis and transition-metal-catalyzed asymmetric C-H activation as an efficient and sustainable method for the construction of chiral molecules remains elusive and challenging. Herein, we develop a cobalt-catalyzed enantioselective C-H activation reaction enabled by visible-light photoredox catalysis, providing a synergistic catalytic strategy for the asymmetric dearomatization of indoles with high levels of enantioselectivity (96 % to >99 % ee). Mechanistic studies indicate that the excited photocatalyst was quenched by divalent cobalt species in the presence of Salox ligand, leading to the formation of catalytically active chiral Co(III) complex. Moreover, stoichiometric reactions of cobaltacycle intermediate with indole suggest that the irradiation of visible light also play a critical role in the dearomatization step.

19.
J Am Chem Soc ; 145(45): 24499-24505, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38104268

RESUMEN

The transition metal-catalyzed enantioselective C-H functionalization strategy has revolutionized the logic of natural product synthesis. However, previous applications have heavily relied on the use of noble metal catalysts such as rhodium and palladium. Herein, we report the efficient synthesis of C1-chiral 1,2-dihydroisoquinolines (DHIQs) via enantioselective C-H/N-H annulation of picolinamides with alkynes catalyzed by a more sustainable and cheaper 3d metal catalyst, cobalt(II) acetate tetrahydrate. A wide range of enantiomerically enriched DHIQs were obtained in good yields with excellent enantioselectivities (up to 98% yield and >99% ee). The robustness and synthetic potential of this method were demonstrated by the modular and asymmetric syntheses of several tetrahydroisoquinoline alkaloids, including (S)-norlaudanosine, (S)-laudanosine, (S)-xylopinine, (S)-sebiferine, and (S)-cryptostyline II, and the asymmetric syntheses of key intermediates of (+)-solifenacin, FR115427, and (+)-NPS R-568.

20.
Anal Chem ; 95(15): 6417-6424, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37031399

RESUMEN

Rapid and sensitive detection of foodborne bacteria is of great significance in guaranteeing food safety and preventing foodborne diseases. A bifunctional Au@Pt core-shell nanozyme with excellent catalytic properties and high surface-enhanced Raman scattering (SERS) activity was developed for the highly sensitive detection of Salmonella typhimurium based on a label-free SERS strategy. The ultrathin Pt shell (about 1 nm) can catalyze Raman-inactive molecules into Raman-active reporters, greatly amplifying the amount of signal molecules. Moreover, the Au core serves as an active SERS substrate to enhance the signal of reporter molecules, further significantly improving the detection sensitivity. Benefiting from the excellent properties, such a bifunctional Au@Pt nanozyme was integrated with a magnetic immunoassay to construct a label-free SERS platform for the highly sensitive detection of S. typhi with a low detection limit of 10 CFU mL-1. Also, the Au@Pt-based SERS platform exhibited excellent selectivity and was successfully utilized for the detection of S. typhi in milk samples by a portable Raman spectrometer. Our demonstration of the bifunctional nanozyme-based SERS strategy provides an efficient pathway to improve the sensitivity of label-free SERS detection of pathogens and holds great promise in food safety, environmental analysis, and other biosensing fields.


Asunto(s)
Técnicas Biosensibles , Enfermedades Transmitidas por los Alimentos , Nanopartículas del Metal , Humanos , Animales , Leche , Inocuidad de los Alimentos , Inmunoensayo , Espectrometría Raman , Oro/química , Nanopartículas del Metal/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA