Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Am Soc Nephrol ; 27(8): 2289-308, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26647425

RESUMEN

Evidence suggests that the glycogen synthase kinase 3 (GSK3)-dictated nuclear exclusion and degradation of Nrf2 is pivotal in switching off the self-protective antioxidant stress response after injury. Here, we examined the mechanisms underlying this regulation in glomerular disease. In primary podocytes, doxorubicin elicited cell death and actin cytoskeleton disorganization, concomitant with overactivation of GSK3ß (the predominant GSK3 isoform expressed in glomerular podocytes) and minimal Nrf2 activation. SB216763, a highly selective small molecule inhibitor of GSK3, exerted a protective effect that depended on the potentiated Nrf2 antioxidant response, marked by increased Nrf2 expression and nuclear accumulation and augmented production of the Nrf2 target heme oxygenase-1. Ectopic expression of the kinase-dead mutant of GSK3ß in cultured podocytes reinforced the doxorubicin-induced Nrf2 activation and prevented podocyte injury. Conversely, a constitutively active GSK3ß mutant blunted the doxorubicin-induced Nrf2 response and exacerbated podocyte injury, which could be abolished by treatment with SB216763. In murine models of doxorubicin nephropathy or nephrotoxic serum nephritis, genetic targeting of GSK3ß by doxycycline-inducible podocyte-specific knockout or pharmacologic targeting by SB216763 significantly attenuated albuminuria and ameliorated histologic signs of podocyte injury, including podocytopenia, loss of podocyte markers, podocyte de novo expression of desmin, and ultrastructural lesions of podocytopathy (such as foot process effacement). This beneficial outcome was likely attributable to an enhanced Nrf2 antioxidant response in glomerular podocytes because the selective Nrf2 antagonist trigonelline abolished the proteinuria-reducing and podocyte-protective effect. Collectively, our results suggest the GSK3ß-regulated Nrf2 antioxidant response as a novel therapeutic target for protecting podocytes and treating proteinuric glomerulopathies.


Asunto(s)
Glucógeno Sintasa Quinasa 3 beta/fisiología , Enfermedades Renales/enzimología , Enfermedades Renales/etiología , Factor 2 Relacionado con NF-E2/fisiología , Podocitos/enzimología , Animales , Antioxidantes , Glucógeno Sintasa Quinasa 3 beta/efectos de los fármacos , Glucógeno Sintasa Quinasa 3 beta/genética , Masculino , Ratones , Proteinuria/enzimología , Proteinuria/etiología
2.
ACS Appl Bio Mater ; 5(6): 2943-2955, 2022 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-35575694

RESUMEN

Low back pain is the most common health problem with a prevalence of over 80% worldwide and an estimated annual cost of $100 billion in the United States. Intervertebral disc degeneration accounts for a major cause of low back pain. However, there is still a lack of safe and effective treatment to tackle this devastating condition. In this study, we synthesized four functionalized trimetallic nitride endohedral metallofullerenes (carboxyl-f-Sc3N@C80, carboxyl-f-Gd3N@C80, amino-f-Sc3N@C80, and amino-f-Gd3N@C80) and characterized them with X-ray photoelectron spectroscopy, matrix-assisted laser desorption/ionization-time of flight mass spectrometry, and UV-vis. Via electron paramagnetic resonance, all four metallofullerene derivatives possessed dose-dependent radical scavenging capabilities (hydroxyl radicals and superoxide anions), with the most promising radical scavenging properties shown in the amine functionalized C80 metallofullerenes. Both amino-f-Sc3N@C80 and amino-f-Gd3N@C80 at 1 µM significantly reduced lipopolysaccharide induced reactive oxygen species production and mRNA expressions of pro-inflammatory mediators (inos, tnf-α, il-1, and cox-2) in macrophages without apparent cytotoxicity through regulating activity of p38 MAPK, p65, and nuclear translocation of NF-κB. Furthermore, in an established mouse model of lumbar radiculopathy, amino-f-Sc3N@C80 and amino-f-Gd3N@C80 effectively alleviated ipsilateral mechanical hyperalgesia for up to 2 weeks. In dorsal root ganglia explant culture, we also showed that amino-f-Sc3N@C80 and amino-f-Gd3N@C80 ameliorated TNF-α elicited neuroinflammation. In summary, we presented results for a potent radical scavenging, anti-inflammatory and analgesic nanoparticle, amino-functionalized eighty-carbon metallofullerenes in vitro and in vivo. Our study provides important assets for developing pleiotropic treatment strategies to tackle the inflammation, a significant pathological hallmark in the intervertebral disc degeneration and associated pain.


Asunto(s)
Fulerenos , Degeneración del Disco Intervertebral , Dolor de la Región Lumbar , Nanopartículas , Aminas , Animales , Fulerenos/farmacología , Ratones , Nanopartículas/química , Factor de Necrosis Tumoral alfa
3.
Bone ; 139: 115522, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32622876

RESUMEN

OBJECTIVE: To explore the role of cellular communication network factor 1 (CCN1) in cartilage inflammaging and osteoarthritis (OA) pathogenesis in the isolated primary human chondrocytes in vitro, cartilage explants ex vivo, and a pre-clinical mice model. METHODS: Recombinant human CCN1 stimulation and small interfering RNA inhibition were conducted in human chondrocytes. The RNA was extracted to quantify catabolic targets and pro-inflammatory genes and the proteins were probed with specific antibodies. IL-1ß and IL-6 were monitored by ELISA. IHC was performed to evaluate important hypertrophic hallmarks and catabolic markers. The effects of Tanshinone IIA on chondrocytes were investigated in both time-dependent and dose-dependent processes. Cartilage explants were cultured in growth medium and further treated with Tanshinone IIA. The intra-articular injection was performed in 13 months old C57BL/6J mice. Safranin O and fast green staining were performed to evaluate the histological change of cartilage followed by a semi-quantitative analysis using the OARSI scoring system. RESULTS: RNA and protein levels of CCN1 increased in an age-dependent manner compared to young donors. Increased CCN1 expression was also found in the damaged area compared to the non-lesion area which correlated with the advanced pathological change in human OA. The overexpression of CCN1 promoted chondrocytes senescence, while the down-regulation of CCN1 by small interfering RNA reduced CCN1 production and limited inflammation secretion suggesting that CCN1 was a possible novel target to intervene OA. Inhibition of CCN1 by using Tanshinone IIA could reduce SASP components in a dose- and time-dependent manner. Additionally, our data showed that Tanshinone IIA was able to preserve articular cartilage integrity, suppress CCN1 production, and inhibit SASP factors in human cartilage explants and in aged mice model. CONCLUSION: This study showed that CCN1 signaling aggravated cartilage inflammaing and matrix degradation. Collectively, our findings showed new insight into repurposing Tanshinone IIA for slowing down OA advancement in human and mice by inhibiting the CCN1 axis.


Asunto(s)
Cartílago Articular , Osteoartritis , Animales , Células Cultivadas , Senescencia Celular , Condrocitos , Proteína 61 Rica en Cisteína , Humanos , Interleucina-1beta , Ratones , Ratones Endogámicos C57BL , Osteoartritis/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA