Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 35(5): 786-793, 2018 10 25.
Artículo en Zh | MEDLINE | ID: mdl-30370720

RESUMEN

Both spike and local field potential (LFP) signals are two of the most important candidate signals for neural decoding. At present there are numerous studies on their decoding performance in mammals, but the decoding performance in birds is still not clear. We analyzed the decoding performance of both signals recorded from nidopallium caudolaterale area in six pigeons during the goal-directed decision-making task using the decoding algorithm combining leave-one-out and k-nearest neighbor (LOO- kNN). And the influence of the parameters, include the number of channels, the position and size of decoding window, and the nearest neighbor k value, on the decoding performance was also studied. The results in this study have shown that the two signals can effectively decode the movement intention of pigeons during the this task, but in contrast, the decoding performance of LFP signal is higher than that of spike signal and it is less affected by the number of channels. The best decoding window is in the second half of the goal-directed decision-making process, and the optimal decoding window size of LFP signal (0.3 s) is shorter than that of spike signal (1 s). For the LOO- kNN algorithm, the accuracy is inversely proportional to the k value. The smaller the k value is, the larger the accuracy of decoding is. The results in this study will help to parse the neural information processing mechanism of brain and also have reference value for brain-computer interface.

2.
Math Biosci Eng ; 19(7): 7388-7409, 2022 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-35730312

RESUMEN

Computing the minimal axiom sets (MinAs) for an unsatisfiable class is an important task in incoherent ontology debugging. Ddebugging ontologies based on patterns (DOBP) is a pattern-based debugging method that uses a set of heuristic strategies based on four patterns. Each pattern is represented as a directed graph and the depth-first search strategy is used to find the axiom paths relevant to the MinAs of the unsatisfiable class. However, DOBP is inefficient when a debugging large incoherent ontology with a lot of unsatisfiable classes. To solve the problem, we first extract a module responsible for the erroneous classes and then compute the MinAs based on the extracted module. The basic idea of module extraction is that rather than computing MinAs based on the original ontology O, they are computed based on a module M extracted from O. M provides a smaller search space than O because M is considerably smaller than O. The experimental results on biological ontologies show that the module extracted using the Module-DOBP method is smaller than the original ontology. Lastly, our proposed approach optimized with the module extraction algorithm is more efficient than the DOBP method both for large-scale ontologies and numerous unsatisfiable classes.


Asunto(s)
Ontologías Biológicas , Algoritmos , Heurística
3.
Struct Dyn ; 8(5): 054301, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34631932

RESUMEN

A systemic investigation of the terahertz (THz) transmission of La0.67Ca0.33MnO3 film on the (001)-oriented NdGaO3 substrate under external magnetic field and low temperature have been performed. The significant THz absorption difference between the out-of-plane and the in-plane magnetic field direction is observed, which is consistent with the electrical transport measurement using the standard four-probe technique. Furthermore, we find that the complex THz conductivities can be reproduced in terms of the Drude Smith equation as the magnetic field is perpendicular to the film plane, whereas it deviates from this model when the in-plane magnetic field is applied. We suggest that such anisotropies in THz transport dynamics have close correspondences with the phase separation and anisotropic magnetoresistance effects in the perovskite-structured manganites. Our work demonstrates that the THz time-domain spectroscopy (TDS) can be an effective non-contact method for studying the magneto-transport properties of the perovskite-structured manganites.

4.
Comput Intell Neurosci ; 2021: 5594733, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33859679

RESUMEN

Obstructive sleep apnea (OSA) is a common sleep-related respiratory disorder. Around the world, more and more people are suffering from OSA. Because of the limitation of monitor equipment, many people with OSA remain undetected. Therefore, we propose a sleep-monitoring model based on single-channel electrocardiogram using a convolutional neural network (CNN), which can be used in portable OSA monitor devices. To learn different scale features, the first convolution layer comprises three types of filters. The long short-term memory (LSTM) is used to learn the long-term dependencies such as the OSA transition rules. The softmax function is connected to the final fully connected layer to obtain the final decision. To detect a complete OSA event, the raw ECG signals are segmented by a 10 s overlapping sliding window. The proposed model is trained with the segmented raw signals and is subsequently tested to evaluate its event detection performance. According to experiment analysis, the proposed model exhibits Cohen's kappa coefficient of 0.92, a sensitivity of 96.1%, a specificity of 96.2%, and an accuracy of 96.1% with respect to the Apnea-ECG dataset. The proposed model is significantly higher than the results from the baseline method. The results prove that our approach could be a useful tool for detecting OSA on the basis of a single-lead ECG.


Asunto(s)
Síndromes de la Apnea del Sueño , Apnea Obstructiva del Sueño , Electrocardiografía , Humanos , Redes Neurales de la Computación , Polisomnografía , Apnea Obstructiva del Sueño/diagnóstico
5.
Comput Methods Programs Biomed ; 183: 105089, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31586788

RESUMEN

BACKGROUND AND OBJECTIVE: In recent years, several automatic sleep stage classification methods based on convolutional neural networks (CNN) by learning hierarchical feature representation automatically from raw EEG data have been proposed. However, the state-of-the-art of such methods are quite complex. Using a simple CNN architecture to classify sleep stages is important for portable sleep devices. In addition, employing CNNs to learn rich and diverse representations remains a challenge. Therefore, we propose a novel CNN model for sleep stage classification. METHODS: Generally, EEG signals are better described in the frequency domain; thus, we convert EEG data to a time-frequency representation via Hilbert-Huang transform. To learn rich and effective feature representations, we propose an orthogonal convolutional neural network (OCNN). First, we construct an orthogonal initialization of weights. Second, to avoid destroying the orthogonality of the weights in the training process, orthogonality regularizations are proposed to maintain the orthogonality of weights. Simultaneously, a squeeze-and-excitation (SE) block is employed to perform feature recalibration across different channels. RESULTS: The proposed method achieved a total classification accuracy of 88.4% and 87.6% on two public datasets, respectively. The classification performances of different convolutional neural networks models were compared to that of the proposed method. The experiment results demonstrated that the proposed method is effective for sleep stage classification. CONCLUSIONS: Experiment results indicate that the proposed OCNN can learn rich and diverse feature representations from time-frequency images of EEG data, which is important for deep learning. In addition, the proposed orthogonality regularization is simple and can be easily adapted to other architectures.


Asunto(s)
Electroencefalografía , Redes Neurales de la Computación , Procesamiento de Señales Asistido por Computador , Fases del Sueño , Adulto , Algoritmos , Calibración , Bases de Datos Factuales , Electrocardiografía , Humanos , Aprendizaje Automático , Masculino , Polisomnografía , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Sueño , Apnea Obstructiva del Sueño/diagnóstico por imagen , Trastornos del Sueño-Vigilia/diagnóstico por imagen , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA