Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Clin Proteomics ; 21(1): 44, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38918720

RESUMEN

BACKGROUND: Tumorigenesis and progression of prostate cancer (PCa) are indispensably dependent on androgen receptor (AR). Antiandrogen treatment is the principal preference for patients with advanced PCa. However, the molecular characteristics of PCa with antiandrogen intervention have not yet been fully uncovered. METHODS: We first performed proteome analysis with 32 PCa tumor samples and 10 adjacent tissues using data-independent acquisition (DIA)- parallel accumulation serial fragmentation (PASEF) proteomics. Then label-free quantification (LFQ) mass spectrometry was employed to analyze protein profiles in LNCaP and PC3 cells. RESULTS: M-type creatine kinase CKM and cartilage oligomeric matrix protein COMP were demonstrated to have the potential to be diagnostic biomarkers for PCa at both mRNA and protein levels. Several E3 ubiquitin ligases and deubiquitinating enzymes (DUBs) were significantly altered in PCa and PCa cells under enzalutamide treatment, and these proteins might reprogram proteostasis at protein levels in PCa. Finally, we discovered 127 significantly varied proteins in PCa samples with antiandrogen therapy and further uncovered 4 proteins in LNCaP cells upon enzalutamide treatment. CONCLUSIONS: Our research reveals new potential diagnostic biomarkers for prostate cancer and might help resensitize resistance to antiandrogen therapy.

2.
Hepatology ; 75(1): 74-88, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34387904

RESUMEN

BACKGROUND AND AIMS: Peroxisome proliferator-activated receptor α (PPARα, NR1C1) is a ligand-activated nuclear receptor involved in the regulation of lipid catabolism and energy homeostasis. PPARα activation induces hepatomegaly and plays an important role in liver regeneration, but the underlying mechanisms remain unclear. APPROACH AND RESULTS: In this study, the effect of PPARα activation on liver enlargement and regeneration was investigated in several strains of genetically modified mice. PPARα activation by the specific agonist WY-14643 significantly induced hepatomegaly and accelerated liver regeneration after 70% partial hepatectomy (PHx) in wild-type mice and Pparafl/fl mice, while these effects were abolished in hepatocyte-specific Ppara-deficient (PparaΔHep ) mice. Moreover, PPARα activation promoted hepatocyte hypertrophy around the central vein area and hepatocyte proliferation around the portal vein area. Mechanistically, PPARα activation regulated expression of yes-associated protein (YAP) and its downstream targets (connective tissue growth factor, cysteine-rich angiogenic inducer 61, and ankyrin repeat domain 1) as well as proliferation-related proteins (cyclins A1, D1, and E1). Binding of YAP with the PPARα E domain was critical for the interaction between YAP and PPARα. PPARα activation further induced nuclear translocation of YAP. Disruption of the YAP-transcriptional enhancer factor domain family member (TEAD) association significantly suppressed PPARα-induced hepatomegaly and hepatocyte enlargement and proliferation. In addition, PPARα failed to induce hepatomegaly in adeno-associated virus-Yap short hairpin RNA-treated mice and liver-specific Yap-deficient mice. Blockade of YAP signaling abolished PPARα-induced hepatocyte hypertrophy around the central vein area and hepatocyte proliferation around the portal vein area. CONCLUSIONS: This study revealed a function of PPARα in regulating liver size and liver regeneration through activation of the YAP-TEAD signaling pathway. These findings have implications for understanding the physiological functions of PPARα and suggest its potential for manipulation of liver size and liver regeneration.


Asunto(s)
Hepatomegalia/genética , Regeneración Hepática/genética , PPAR alfa/metabolismo , Factores de Transcripción de Dominio TEA/metabolismo , Proteínas Señalizadoras YAP/metabolismo , Animales , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Hepatectomía/efectos adversos , Hepatocitos/patología , Hepatomegalia/patología , Humanos , Hígado/patología , Hígado/cirugía , Regeneración Hepática/efectos de los fármacos , Masculino , Ratones , Ratones Transgénicos , PPAR alfa/agonistas , Pirimidinas/administración & dosificación , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Proteínas Señalizadoras YAP/genética
3.
Sensors (Basel) ; 23(24)2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38139645

RESUMEN

The detection of abnormal lane-changing behavior in road vehicles has applications in traffic management and law enforcement. The primary approach to achieving this detection involves utilizing sensor data to characterize vehicle trajectories, extract distinctive parameters, and establish a detection model. Abnormal lane-changing behaviors can lead to unsafe interactions with surrounding vehicles, thereby increasing traffic risks. Therefore, solely focusing on individual vehicle perspectives and neglecting the influence of surrounding vehicles in abnormal lane-changing behavior detection has limitations. To address this, this study proposes a framework for abnormal lane-changing behavior detection. Initially, the study introduces a novel approach for representing vehicle trajectories that integrates information from surrounding vehicles. This facilitates the extraction of feature parameters considering the interactions between vehicles and distinguishing between different phases of lane-changing. The Light Gradient Boosting Machine (LGBM) algorithm is then employed to construct an abnormal lane-changing behavior detection model. The results indicate that this framework exhibits high detection accuracy, with the integration of surrounding vehicle information making a significant contribution to the detection outcomes.

4.
Small ; 18(8): e2106323, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34898006

RESUMEN

The precise phase control of Cs-Pb-Br derivatives from 3D CsPbBr3 to 0D Cs4 PbBr6 highly determines the photovoltaic performance of all-inorganic CsPbBr3 perovskite solar cells (PSCs). Herein, the preferred phase conversion from precursor to Cs-Pb-Br derivatives is revealed by theoretically calculating the Gibbs free energies (∆G) of various phase conversion processes, allowing for a simplified multi-step solution-processable spin-coating method to hinder the formation of detrimental 0D Cs4 PbBr6 phase and enhance the photovoltaic performance of a PSC because of its large exciton binding energy, which is regarded as a recombination center. By further accelerating the interfacial charge extraction with a novel 2D transition metal dichalcogenide ReSe2 , the hole-free CsPbBr3 PSC achieves a champion efficiency of 10.67% with an impressive open-circuit voltage of 1.622 V and an excellent long-term stability. This work provides an in-depth understanding on the precise Cs-Pb-Br perovskite phase control and the effect of derivatives on photovoltaic performance of advanced CsPbBr3 PSCs.

5.
Acta Pharmacol Sin ; 43(1): 146-156, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33782543

RESUMEN

Mifepristone (Mif), an effective synthetic steroidal antiprogesterone drug, is widely used for medical abortion and pregnancy prevention. Due to its anti-glucocorticoid effect, high-dose Mif is also used to treat Cushing's syndrome. Mif was reported to active pregnane X receptor (PXR) in vitro and PXR can induce hepatomegaly via activation and interaction with yes-associated protein (YAP) pathway. High-dose Mif was reported to induce hepatomegaly in rats and mice, but the underlying mechanism remains unclear. Here, the role of PXR was studied in Mif-induced hepatomegaly in C57BL/6 mice and Pxr-knockout mice. The results demonstrated that high-dose Mif (100 mg · kg-1 · d-1, i.p.) treatment for 5 days significantly induced hepatomegaly with enlarged hepatocytes and promoted proliferation, but low dose of Mif (5 mg · kg-1 · d-1, i.p.) cannot induce hepatomegaly. The dual-luciferase reporter gene assays showed that Mif can activate human PXR in a concentration-dependent manner. In addition, Mif could promote nuclear translocation of PXR and YAP, and significantly induced the expression of PXR, YAP, and their target proteins such as CYP3A11, CYP2B10, UGT1A1, ANKRD, and CTGF. However, Mif (100 mg · kg-1 · d-1, i.p.) failed to induce hepatomegaly in Pxr-knockout mice, as well as hepatocyte enlargement and proliferation, further indicating that Mif-induced hepatomegaly is PXR-dependent. In summary, this study demonstrated that PXR-mediated Mif-induced hepatomegaly in mice probably via activation of YAP pathway. This study provides new insights in Mif-induced hepatomegaly, and provides novel evidence on the crucial function of PXR in liver enlargement and regeneration.


Asunto(s)
Hepatomegalia/metabolismo , Receptor X de Pregnano/metabolismo , Animales , Relación Dosis-Respuesta a Droga , Hepatomegalia/inducido químicamente , Masculino , Ratones , Ratones Endogámicos C57BL , Mifepristona , Estructura Molecular , Relación Estructura-Actividad
6.
Hepatology ; 69(1): 343-358, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30048004

RESUMEN

Activation of pregnane X receptor (PXR), a nuclear receptor that controls xenobiotic and endobiotic metabolism, is known to induce liver enlargement, but the molecular signals and cell types responding to PXR-induced hepatomegaly remain unknown. In this study, the effect of PXR activation on liver enlargement and cell change was evaluated in several strains of genetically modified mice and animal models. Lineage labeling using AAV-Tbg-Cre-treated Rosa26EYFP mice or Sox9-CreERT , Rosa26EYFP mice was performed and Pxr-null mice or AAV Yap short hairpin RNA (shRNA)-treated mice were used to confirm the role of PXR or yes-associated protein (YAP). Treatment with selective PXR activators induced liver enlargement and accelerated regeneration in wild-type (WT) and PXR-humanized mice, but not in Pxr-null mice, by increase of cell size, induction of a regenerative hybrid hepatocyte (HybHP) reprogramming, and promotion of hepatocyte and HybHP proliferation. Mechanistically, PXR interacted with YAP and PXR activation induced nuclear translocation of YAP. Blockade of YAP abolished PXR-induced liver enlargement in mice. Conclusion: These findings revealed a function of PXR in enlarging liver size and changing liver cell fate by activation of the YAP signaling pathway. These results have implications for understanding the physiological functions of PXR and suggest the potential for manipulation of liver size and liver cell fate.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Proteínas de Ciclo Celular/fisiología , Hepatocitos/fisiología , Hígado/anatomía & histología , Receptor X de Pregnano/fisiología , Animales , Diferenciación Celular , Hígado/crecimiento & desarrollo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Tamaño de los Órganos , Proteínas Señalizadoras YAP
7.
Drug Metab Dispos ; 48(9): 830-839, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32561593

RESUMEN

Dexamethasone (Dex), a widely prescribed anti-inflammatory drug, was reported to induce liver enlargement (hepatomegaly) in clinical practice and in animal models. However, the underlying mechanisms are not elucidated. Dex is a known activator of pregnane X receptor (PXR). Yes-associated protein (YAP) has been implicated in chemically induced liver enlargement. Here, the roles of PXR and YAP pathways were investigated in Dex-induced hepatomegaly. Upregulation of PXR downstream proteins, including cytochrome P450 (CYP) 3A11, 2B10, and organic anion transporter polypeptide 2 (OATP2), indicated PXR signaling was activated after high dose of Dex (50 mg/kg, i.p.), and Dex at 100 µM activated PXR in the dual-luciferase reporter gene assay. Dex also increased the expression of total YAP, nuclear YAP, and YAP downstream proteins, including connective tissue growth factor and cysteine-rich angiogenic inducer 61, indicating activation of the YAP pathway. Furthermore, nuclear translocation of YAP was promoted by activation of PXR. However, hepatocyte proliferation was inhibited with significant decrease in the expression of proliferation-related proteins cyclin D1 and proliferating cell nuclear antigen as well as other regulatory factors, such as forkhead box protein M1, c-MYC, and epidermal growth factor receptor. The inhibitory effect of Dex on hepatocyte proliferation was likely due to its anti-inflammation effect of suppression of inflammation factors. ß-catenin staining revealed enlarged hepatocytes, which were mostly attributable to the accumulation of lipids, such as triglycerides. In summary, high-dose Dex increased liver size accompanied by enlarged hepatocytes, and this was due to the activation of PXR/YAP and their effects on lipid accumulation but not hepatocyte proliferation. These findings provide new insights for understanding the mechanism of Dex-induced hepatomegaly. SIGNIFICANCE STATEMENT: This study identified the roles of pregnane X receptor (PXR) and yes-associated protein (YAP) pathways in dexamethasone (Dex)-induced hepatomegaly. Dex induced PXR/YAP activation, enlarged hepatocytes, and promoted liver enlargement with lipid accumulation, such as triglycerides. However, hepatocyte proliferation was inhibited by the anti-inflammatory effect of Dex. These findings provide new insights for understanding the mechanism of Dex-induced hepatomegaly.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Dexametasona/efectos adversos , Hepatomegalia/inducido químicamente , Receptor X de Pregnano/metabolismo , Factores de Transcripción/metabolismo , Animales , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Células HEK293 , Células Hep G2 , Hepatocitos , Hepatomegalia/patología , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/patología , Masculino , Ratones , Sincalida/farmacocinética , Triglicéridos/análisis , Triglicéridos/metabolismo , Proteínas Señalizadoras YAP
8.
Anal Bioanal Chem ; 409(22): 5349-5358, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28717896

RESUMEN

Lipidomics, which reveals comprehensive characterization of molecular lipids, is a rapidly growing technology used in biomedical research. Lipid extraction is a critical step in lipidomic analysis. However, the effectiveness of different lipid extract solvent systems from cellular samples still remains unclear. In the current study, the protocol of reverse-phase liquid chromatography mass spectrometry (LC/MS)-based lipidomics was optimized for extraction and detection of lipids from human pancreatic cancer cell line PANC-1. Four different extraction methods were compared, including methanol/methyl-tert-butyl ether (MTBE)/H2O, methanol/chloroform, methanol/MTBE/chloroform, and hexane/isopropanol. Data were acquired using high-resolution mass spectrometry in positive and negative ion modes respectively. The number of total detected and identified lipids was assessed with the aid of automated lipid identification software LipidSearch. Results demonstrated that methanol/MTBE/H2O provided a better extraction efficiency for different lipid classes, which was chosen as the optimized extraction solvent system. This validated method enables highly sensitive and reproducible analysis for a variety of cellular lipids, which was further applied to an untargeted lipidomic study on human pancreatic cancer PANC-1 cell lines. Moreover, this optimized extraction solvent system can be further applied to other cancer cell lines with similar chemical and physical properties. Graphical abstract Optimized UHPLC-ESI-HRMS-based lipidomic analysis of cancer cells.


Asunto(s)
Lípidos/aislamiento & purificación , Neoplasias/química , Animales , Línea Celular Tumoral , Cromatografía Liquida , Fluorescencia , Humanos , Lípidos/química , Espectrometría de Masas , Neoplasias Pancreáticas/química
9.
Comput Intell Neurosci ; 2022: 9162360, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36093470

RESUMEN

In order to improve the security and stability of data transmission in vehicle-road cooperative communication and reduce the error rate of data transmission, a fast data transmission method based on the clustering algorithm is proposed. First, the multisensor information acquisition method of the vehicle networking is used to realize data acquisition and data structure analysis of the vehicle-road cooperative communication, and a data transmission channel model for vehicle-road cooperative communication is constructed. The interference suppression in the data transmission process of the vehicle-road cooperative communication is realized by the matched filter detection algorithm. Then, according to the symbol characteristic distribution of the vehicle-road cooperative communication channel, the baud interval equalization method is used to realize the piecewise equalization adjustment of data transmission for the vehicle-road cooperative communication. With the adaptive error compensation and channel fading suppression, the K-means clustering algorithm is used to carry out the coordinated adjustment to data packets during the rapid data transmission of the vehicle-road cooperative communication. Finally, the adaptive control of data transmission for the vehicle-road cooperative communication is carried out according to the dynamic distribution characteristics of the clustering center so as to reduce the influence of channel fading and intersymbol interference caused by channel spread. The simulation results show that the bit error rate of this method is kept at about 0.05, and the data transmission rate continues to increase, most of which remain above 0.95. This method has strong anti-interference ability for the rapid data transmission of vehicle-road cooperative communication, with lower communication bit error rate, less end-to-end time delay, and higher stability and accuracy of data transmission.

10.
J Pharm Biomed Anal ; 195: 113851, 2021 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-33387840

RESUMEN

Pregnane X receptor (PXR) is highly expressed in the liver and plays an integral role in the control of xenobiotic and endobiotic metabolism to maintain homeostasis. We previously reported that activation of PXR significantly induced liver enlargement. But the lipid profiling during PXR-induced hepatomegaly remains unclear. This study aimed to characterize the effect of PXR activation on hepatic lipid homeostasis by lipidomics analysis. Mice were intraperitoneally administered with the typical mPXR agonist, pregnenolone 16α-carbonitrile (PCN, 100 mg/kg/d), for 5 days. Liver and serum were collected for further analysis. The results confirmed that PXR activation can significantly induce liver enlargement. An obvious hepatic lipid accumulation was observed in PCN-treated mice, as determined by H&E and Oil Red O staining. Ultra-high performance liquid chromatography-Q Exactive Orbitrap high-resolution mass spectrometer (UHPLC-Q Exactive Orbitrap HRMS)-based lipidomics was performed to characterize the change in lipid species. A total of 20 potential lipid biomarkers were significantly perturbed. The most significant change was found in the triacylglycerol (TG), which constituted with the lower number of carbon atoms and double bonds. Moreover, the mRNA expression levels showed that PCN-induced PXR activation significantly regulated the expression of genes involved in the uptake, synthesis and metabolism of TG, which was consistent with increased TG levels. Collectively, these findings demonstrated that lipids such as TG were significantly accumulated during PXR-induced hepatomegaly.


Asunto(s)
Lipidómica , Receptores Citoplasmáticos y Nucleares , Animales , Glicósidos , Hepatomegalia/inducido químicamente , Hepatomegalia/genética , Hígado , Ratones , Receptor X de Pregnano/genética , Pregnanos , Triglicéridos
11.
Acta Pharm Sin B ; 11(3): 727-737, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33777678

RESUMEN

The constitutive androstane receptor (CAR, NR3I1) belongs to nuclear receptor superfamily. It was reported that CAR agonist TCPOBOP induces hepatomegaly but the underlying mechanism remains largely unknown. Yes-associated protein (YAP) is a potent regulator of organ size. The aim of this study is to explore the role of YAP in CAR activation-induced hepatomegaly and liver regeneration. TCPOBOP-induced CAR activation on hepatomegaly and liver regeneration was evaluated in wild-type (WT) mice, liver-specific YAP-deficient mice, and partial hepatectomy (PHx) mice. The results demonstrate that TCPOBOP can increase the liver-to-body weight ratio in wild-type mice and PHx mice. Hepatocytes enlargement around central vein (CV) area was observed, meanwhile hepatocytes proliferation was promoted as evidenced by the increased number of KI67+ cells around portal vein (PV) area. The protein levels of YAP and its downstream targets were upregulated in TCPOBOP-treated mice and YAP translocation can be induced by CAR activation. Co-immunoprecipitation results suggested a potential protein-protein interaction of CAR and YAP. However, CAR activation-induced hepatomegaly can still be observed in liver-specific YAP-deficient (Yap -/-) mice. In summary, CAR activation promotes hepatomegaly and liver regeneration partially by inducing YAP translocation and interaction with YAP signaling pathway, which provides new insights to further understand the physiological functions of CAR.

12.
Phytomedicine ; 84: 153520, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33662920

RESUMEN

BACKGROUND: Schisandrol B (SolB) is one of the bioactive components from a traditional Chinese medicine Schisandra chinensis or Schisandra sphenanthera. It has been demonstrated that SolB exerts hepatoprotective effects against drug-induced liver injury and promotes liver regeneration. It was found that SolB can induce hepatomegaly but the involved mechanisms remain unknown. PURPOSE: This study aimed to explore the mechanisms involved in SolB-induced hepatomegaly. METHODS: Male C57BL/6 mice were injected intraperitoneally with SolB (100 mg/kg) for 5 days. Serum and liver samples were collected for biochemical and histological analyses. The mechanisms of SolB were investigated by qRT-PCR and western blot analyses, luciferase reporter gene assays and immunofluorescence. RESULTS: SolB significantly increased hepatocyte size and proliferation, and then promoted liver enlargement without liver injury and inflammation. SolB transactivated human PXR, activated PXR in mice and upregulated hepatic expression of its downstream proteins, such as CYP3A11, CYP2B10 and UGT1A1. SolB also significantly enhanced nuclear translocation of PXR and YAP in human cell lines. YAP signal pathway was activated by SolB in mice. CONCLUSION: These findings demonstrated that SolB can significantly induce liver enlargement, which is associated with the activation of PXR and YAP pathways.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Ciclooctanos/toxicidad , Dioxoles/toxicidad , Hepatomegalia/inducido químicamente , Lignanos/toxicidad , Receptor X de Pregnano/metabolismo , Factores de Transcripción/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Proliferación Celular/efectos de los fármacos , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Medicamentos Herbarios Chinos/efectos adversos , Medicamentos Herbarios Chinos/química , Regulación de la Expresión Génica/efectos de los fármacos , Células Hep G2 , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Hepatocitos/patología , Hepatomegalia/metabolismo , Hepatomegalia/patología , Humanos , Hígado/efectos de los fármacos , Hígado/patología , Masculino , Ratones Endogámicos C57BL , Tamaño de los Órganos/efectos de los fármacos , Receptor X de Pregnano/genética , Schisandra/química , Transducción de Señal/efectos de los fármacos , Factores de Transcripción/genética , Proteínas Señalizadoras YAP
13.
Theranostics ; 10(16): 7193-7210, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32641987

RESUMEN

Rationale: MicroRNAs are known to influence the development of a variety of cancers. Previous studies revealed that miR-1291 has antiproliferative functions in cancer cells. Carnitine palmitoyltransferase 1C (CPT1C) has a vital role in mitochondrial energy metabolism and modulation of cancer cell proliferation. Since both miR-1291 and CPT1C regulate tumor cell metabolism and cancer progression, we hypothesized that they might be regulated synergistically. Methods: A series of cell phenotype indicators, such as BrdU, colony formation, cell cycle, ATP production, ROS accumulation and cell ability to resist metabolic stress, were performed to clarify the effects of miR-1291 and ERRα expression on tumor cell proliferation and metabolism. A xenograft tumor model was used to evaluate cell tumorigenesis. Meta-analysis and bioinformatic prediction were applied in the search for the bridge-link between miR-1291 and CPT1C. RT-qPCR, western-blot and IHC analysis were used for the detection of mRNA and protein expression. Luciferase assays and ChIP assays were conducted for in-depth mechanism studies. Results: The expression of miR-1291 inhibited growth and tumorigenesis as a result of modulation of metabolism. CPT1C expression was indirectly and negatively correlated with miR-1291 levels. ESRRA was identified as a prominent differentially expressed gene in both breast and pancreatic cancer samples, and estrogen-related receptor α (ERRα) was found to link miR-1291 and CPT1C. MiR-1291 targeted ERRα and CPT1C was identified as a newly described ERRα target gene. Moreover, ERRα was found to influence cancer cell metabolism and proliferation, consistent with the cellular changes caused by miR-1291. Conclusion: This study demonstrated the existence and mechanism of action of a novel miR-1291-ERRα-CPT1C cancer metabolism axis that may provide new insights and strategies for the development of miRNA-based therapies for malignant cancers.


Asunto(s)
Neoplasias de la Mama/genética , Carnitina O-Palmitoiltransferasa/genética , MicroARNs/metabolismo , Neoplasias Pancreáticas/genética , Receptores de Estrógenos/genética , Animales , Mama/patología , Neoplasias de la Mama/patología , Carcinogénesis/efectos de los fármacos , Carcinogénesis/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Metabolismo Energético/genética , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HEK293 , Humanos , Masculino , MicroARNs/antagonistas & inhibidores , Mitocondrias/metabolismo , Páncreas/patología , Neoplasias Pancreáticas/patología , Receptores de Estrógenos/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Receptor Relacionado con Estrógeno ERRalfa
14.
J Ethnopharmacol ; 245: 112103, 2019 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-31336134

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Cholestasis is a clinical syndrome caused by toxic bile acid retention that will lead to serious liver diseases. Ursodeoxycholic acid (UDCA) and obeticholic acid (OCA) are the only two FDA-approved drugs for its treatment. Thus, there is a clear need to develop new therapeutic approaches for cholestasis. Here, anti-cholestasis effects of the lignans from a traditional Chinese herbal medicine, Schisandra sphenanthera, were investigated as well as the involved mechanisms. MATERIALS AND METHODS: Adult male C57BL/6J mice were randomly divided into 9 groups including the control group, LCA group, LCA with specific lignan treatment of Schisandrin A (SinA), Schisandrin B (SinB), Schisandrin C (SinC), Schisandrol A (SolA), Schisandrol B (SolB), Schisantherin A (StnA) and Schisantherin B (StnB), respectively. Mice were treated with each drug (qd) for 7 days, while the administration of lithocholic acid (LCA) (bid) was launched from the 4th day. Twelve hours after the last LCA injection, mice were sacrificed and samples were collected. Serum biochemical measurement and histological analysis were conducted. Metabolomics analysis of serum, liver, intestine and feces were performed to study the metabolic profile of bile acids. RT-qPCR and Western blot analysis were conducted to determine the hepatic expression of genes and proteins related to bile acid homeostasis. Dual-luciferase reporter gene assay was performed to investigate the transactivation effect of lignans on human pregnane X receptor (hPXR). RT-qPCR analysis was used to detect induction effects of lignans on hPXR-targeted genes in HepG2 cells. RESULTS: Lignans including SinA, SinB, SinC, SolA, SolB, StnA, StnB were found to significantly protect against LCA-induced intrahepatic cholestasis, as evidenced by significant decrease in liver necrosis, serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) activity. More importantly, serum total bile acids (TBA) and total bilirubin (Tbili) were also significantly reduced. Metabolomics analysis revealed these lignans accelerated the metabolism of bile acids and increased the bile acid efflux from liver into the intestine or feces. Gene analysis revealed these lignans induced the hepatic expressions of PXR-target genes such as Cyp3a11 and Ugt1a1. Luciferase reporter gene assays illustrated that these bioactive lignans can activate hPXR. Additionally, they can all upregulate hPXR-regulate genes such as CYP3A4, UGT1A1 and OATP2. CONCLUSION: These results clearly demonstrated the lignans from Schisandra sphenanthera exert hepatoprotective effects against LCA-induced cholestasis by activation of PXR. These lignans may provide an effective approach for the prevention and treatment of cholestatic liver injury.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Colestasis/tratamiento farmacológico , Lignanos/uso terapéutico , Receptor X de Pregnano/genética , Sustancias Protectoras/uso terapéutico , Schisandra , Animales , Ácidos y Sales Biliares/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Colestasis/inducido químicamente , Colestasis/metabolismo , Colestasis/patología , Heces/química , Células HEK293 , Células Hep G2 , Humanos , Mucosa Intestinal/metabolismo , Lignanos/farmacología , Ácido Litocólico , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Masculino , Ratones Endogámicos C57BL , Sustancias Protectoras/farmacología
15.
Cell Death Dis ; 9(5): 536, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29748533

RESUMEN

Acetaminophen (APAP) overdose is the most frequent cause of drug-induced acute liver failure. Inhibition of APAP metabolic activation and promotion in APAP disposition are important to protect against APAP-induced liver injury. Tumor suppressor p53 is traditionally recognized as a surveillance molecule to preserve genome integrity. Recent studies have emerged on discovering its functions in metabolic regulation. Our previous study reported that p53 promoted bile acid disposition and alleviated cholestastic syndrome. Here, we examined the effect of doxorubicin (Dox)-mediated p53 activation on APAP-induced hepatotoxicity in mice and revealed a novel role of p53 in regulating APAP metabolism and disposition. Histopathological and biochemical assessments demonstrated that administration of Dox (10 mg/kg/d) before APAP treatment (400 mg/kg) significantly alleviated APAP-induced hepatotoxicity. Dox treatment prevented APAP-induced GSH depletion and lipid peroxidation. p53-null mice were more susceptible to APAP-induced liver injury. Further, we found that the expression of drug-metabolizing enzymes and transporters CYPs, SULTs and MRPs was regulated by p53. Dox treatment also promoted Nrf2 activation and increased the expression of Nrf2 target genes including GSTα/µ and NQO1, which contribute to APAP detoxification. Overall, this study is the first to demonstrate the protective role of p53 in regulating APAP metabolism and disposition, which provides a potential new therapeutic target for APAP-induced liver injury.


Asunto(s)
Acetaminofén/efectos adversos , Acetaminofén/farmacocinética , Proteínas Portadoras/biosíntesis , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Acetaminofén/farmacología , Animales , Proteínas Portadoras/genética , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Doxorrubicina/farmacocinética , Doxorrubicina/farmacología , Masculino , Ratones , Ratones Noqueados , NAD(P)H Deshidrogenasa (Quinona)/genética , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Factor 2 Relacionado con NF-E2/genética , Proteína p53 Supresora de Tumor/genética
16.
Biomed Res Int ; 2015: 945846, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25883981

RESUMEN

Stroke is one of the most common diseases that caused high mortality and has become burden to the health care systems. Stem cell transplantation has shown therapeutic effect in ameliorating ischemic damage after cerebral artery occlusion mainly due to their neurogenesis, immune regulation, or effects on the plasticity, proliferation, and survival of host cells. Recent studies demonstrated that skin-derived precursor cells (SKPs) could promote central nervous system regeneration in spinal cord injury model or the neonatal peripheral neuron. Here, we investigated the therapeutic potential of SKPs in a rat model of cerebral ischemia. SKPs were isolated, expanded, and transplanted into rat cortex and striatum after transient middle cerebral artery occlusion. Our results revealed that SKPs transplantation could improve the behavioral measures of neurological deficit. Moreover, immunohistology confirmed that SKPs could secrete basic FGF and VEGF in the ischemic region and further markedly increase the proliferation of endogenous nestin(+) and ßIII-tubulin(+) neural stem cells. Furthermore, increased angiogenesis induced by SKPs was observed by vWF and α-SMA staining. These data suggest that SKPs induced endogenous neurogenesis and angiogenesis and protected neuron from hypoxic-ischemic environment. In conclusion, SKPs transplantation may be a promising approach in treatment of stroke.


Asunto(s)
Trasplante de Células , Infarto Cerebral , Neovascularización Fisiológica , Células-Madre Neurales/metabolismo , Piel/metabolismo , Animales , Autoinjertos , Infarto Cerebral/metabolismo , Infarto Cerebral/patología , Infarto Cerebral/fisiopatología , Infarto Cerebral/terapia , Masculino , Células-Madre Neurales/patología , Ratas , Ratas Sprague-Dawley , Piel/patología
17.
Biomaterials ; 60: 130-40, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25988728

RESUMEN

Stem cell therapy has been proved to be an effective approach to ameliorate the heart remodeling post myocardial infarction (MI). However, poor cell engraftment and survival in ischemic myocardium limits the successful use of cellular therapy for treating MI. Here, we sought to transplant adipose derived-mesenchymal stem cells (AD-MSCs) with a hydrogel (NapFF-NO), naphthalene covalently conjugated a short peptide, FFGGG, and ß-galactose caged nitric oxide (NO) donor, which can release NO molecule in response to ß-galactosidase. AD-MSCs, either from transgenic mice that constitutively express GFP and firefly luciferase (Fluc), or express Fluc under the control of VEGFR2 promoter, were co-transplanted with NapFF-NO hydrogel into murine MI models. Improved cell survival and enhanced cardiac function were confirmed by bioluminescence imaging (BLI) and echocardiogram respectively. Moreover, increasing VEGFR2-luc expression was also tracked in real-time in vivo, indicating NapFF-NO hydrogel stimulated VEGF secretion of AD-MSCs. To investigate the therapeutic mechanism of NapFF-NO hydrogel, cell migration assay, paracrine action of AD-MSCs, and histology analysis were carried out. Our results revealed that condition medium from AD-MSCs cultured with NapFF-NO hydrogel could promote endothelial cell migration. Additionally, AD-MSCs showed significant improvement secretion of angiogenic factors VEGF and SDF-1α in the presence of NapFF-NO hydrogel. Finally, postmortem analysis confirmed that transplanted AD-MSCs with NapFF-NO hydrogel could ameliorate heart function by promoting angiogenesis and attenuating ventricular remodeling. In conclusion, NapFF-NO hydrogel can obviously improve therapeutic efficacy of AD-MSCs for MI by increasing cell engraftment and angiogenic paracrine action.


Asunto(s)
Preparaciones de Acción Retardada/metabolismo , Hidrogel de Polietilenoglicol-Dimetacrilato/metabolismo , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/citología , Infarto del Miocardio/terapia , Donantes de Óxido Nítrico/administración & dosificación , Tejido Adiposo/citología , Animales , Células Cultivadas , Preparaciones de Acción Retardada/química , Galactosa/química , Galactosa/metabolismo , Corazón/efectos de los fármacos , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Ratones , Ratones Endogámicos C57BL , Infarto del Miocardio/patología , Miocardio/patología , Células 3T3 NIH , Naftalenos/química , Naftalenos/metabolismo , Neovascularización Fisiológica , Donantes de Óxido Nítrico/uso terapéutico , Oligopéptidos/química , Oligopéptidos/metabolismo , Imagen Óptica , Remodelación Ventricular , beta-Galactosidasa/metabolismo
18.
Hum Gene Ther ; 25(9): 787-97, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24827071

RESUMEN

Netrin-1 is typically known as a neuronal guidance factor. Studies have reported the proangiogenic, antiapoptotic, and antiinflammatory properties of Netrin-1. A critical role for Netrin-1 in ischemic organ damage, myocardial infarction (MI) in particular, has also been demonstrated, making Netrin-1 a potential therapeutic target for the treatment of cardiovascular diseases (CVDs). Mesenchymal stem cells (MSCs) have shown promising therapeutic efficacy in preclinical studies. However, limited clinical success was observed, mainly due to poor MSC survival. Given the reported beneficial impact of Netrin-1 in tissue repair and cell survival, we examined the effects of Netrin-1 in MSC therapy against MI-induced ischemic cardiac injury in rats and type 2 diabetic (T2D) mice. MSCs were isolated and Netrin-1-expressing MSCs were obtained by transduction with a Netrin-1-encoding retroviral vector. The Netrin-1-MSCs were then delivered intramyocardially to the infarct sites of rats and T2D mice with MI. Thirty days after MSC implantation, changes at the infarct area, level of collagen deposition, and cardiac hypertrophy were assessed. Molecular mechanisms underlying the effects of Netrin-1 were also investigated. Attenuated MI-induced myocardial dysfunction was observed after Netrin-1-MSC treatment. Protective effects of the Netrin-1-MSCs were attributable primarily to better MSC survival and migration, which is mediated by Netrin-1-induced phosphorylation of p44/42 mitogen-activated protein kinase. Netrin-1-stimulated nitric oxide production was also responsible, which could promote neovessel formation and progenitor cell mobilization in vivo. We report a protective role for Netrin-1 against MI-induced ischemic injuries, reinstating its promising potential as a therapeutic target for CVDs and, more importantly, for patients with CVD with coexisting diabetes.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/metabolismo , Infarto del Miocardio/patología , Infarto del Miocardio/terapia , Factores de Crecimiento Nervioso/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Análisis de Varianza , Animales , Western Blotting , Cartilla de ADN/genética , Vectores Genéticos/genética , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Factores de Crecimiento Nervioso/genética , Netrina-1 , Óxido Nítrico/metabolismo , Fragmentos de Péptidos/metabolismo , Fosforilación , Ratas , Ratas Sprague-Dawley , Retroviridae , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sales de Tetrazolio , Tiazoles , Factores de Transcripción , Transducción Genética , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética
19.
Cardiovasc Res ; 97(2): 208-18, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23066088

RESUMEN

AIMS: Parthenogenetic embryonic stem cells (pESCs) derived from artificially activated oocytes without fertilization presumably raise minimal ethical concerns and may serve as attractive candidates for regenerative medicine. Here we investigated whether pESCs could repair myocardial infarction (MI), in comparison to embryonic stem cells (ESCs). METHODS AND RESULTS: A total of 89 mice that survived coronary artery ligation randomly received an intramyocardial injection of undifferentiated pESCs, ESCs, or saline. Sham-operated mice (n = 21) that received no treatment served as control animals. After 7 days, transplantation of pESCs increased expression of pro-angiogenic factors and reduced leucocyte infiltration. By 14 and 30 days post-MI, similar to treatment with ESCs, treatment with pESCs efficiently prevented cardiac remodelling and enhanced angiogenesis, in contrast to saline-treated hearts. Improved heart contractile function was also notable 30 days following transplantation of pESCs. Immunofluorescence staining revealed that tissues regenerated from pESCs in the infarcted myocardium were positive for markers of cardiomyocytes, endothelial cells, and smooth muscle cells. Unlike ESC-treated mice, which exhibited a high incidence of teratoma (6 of 34), the pESC-treated mice showed no teratomas (0 of 30) 30 days following transplantation. CONCLUSION: Transplantation of pESCs could attenuate cardiac dysfunction and adverse ventricular remodelling post-MI, suggesting that pESCs may provide promising therapeutic sources for MI in females.


Asunto(s)
Células Madre Embrionarias/trasplante , Infarto del Miocardio/terapia , Remodelación Ventricular , Animales , Diferenciación Celular , Colágeno/metabolismo , Femenino , Leucocitos/fisiología , Masculino , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Infarto del Miocardio/fisiopatología , Partenogénesis , Función Ventricular Izquierda
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA