Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Opt Lett ; 49(9): 2497-2500, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38691753

RESUMEN

Visible random fiber lasers have garnered significant attention due to their unique emission properties and potential applications in various fields. We first, to the best of our knowledge, demonstrated a compact all-fiber structure, red wavelength, and random fiber laser (RFL) based on a double-clad Pr-doped ZBLAN fiber. The simple half-open cavity consists of a high-reflectivity fiber pigtail mirror and the Pr-doped ZBLAN fiber. The Pr-doped ZBLAN fiber not only served as a gain medium but also offered random backward scattering. We investigated the effects of different lengths on output power and slope efficiency of the RFL. For 21 m Pr-doped fiber, the RFL emitted a maximum output power of 208.50 mW with a slope efficiency of 11.09%. For 15 m Pr-doped fiber, the maximum power decreased to 120.18 mW with the slope efficiency of 7.27%. We are also numerically simulating the output power versus the pump power at different fiber lengths based on power steady-state light propagation equations. This novel RFL has the potential for broad applications in fields such as display technology, spectroscopy, biomedical imaging, and optical sensing due to its unique properties and simple all-fiber structure.

2.
Huan Jing Ke Xue ; 36(5): 1739-48, 2015 May.
Artículo en Zh | MEDLINE | ID: mdl-26314125

RESUMEN

The BIOLAK is a multi-stage activated sludge process, which has been successfully promoted worldwide. However, the biological community and function of the BIOLAK activated sludge ( the core component in the process) have not been reported so far. In this study, taking Lianyungang Dapu Industrial Zone WWTP as an example, a large-scale metagenomic data (428 588 high-quality DNA sequences) of the BIOLAK activated sludge were obtained by means of a new generation of high-throughput sequencing technology. Amazing biodiversity was revealed in the BIOLAK activated sludge, which included 47 phyla, 872 genera and 1351 species. There were 33 phyla identified in the Bacteria domain (289 933 sequences). Proteohacteria was the most abundant phylum (62.54%), followed by Bacteroidetes (11.29%), Nitrospirae ( 5. 65%) and Planctomycetes (4.79%), suggesting that these groups played a key role in the BIOLAK wastewater treatment system. Among the 748 bacterial genera, Nitrospira (5.60%) was the most prevalent genus, which was a key group in the nitrogen cycle. Followed by Gemmatimonas (2.45%), which was an important genus in the biological phosphorus removal process. In Archaea domain (1019 sequences), three phyla and 39 genera were detected. In Eukaryota domain (1055 sequences), 60 genera and 10 phyla were identified, among which Ciliophora was the largest phylum (257 sequences). Meanwhile, 448 viral sequences were detected in the BIOLAK sludge metagenome, which were dominated by bacteriophages. The proportions of nitrogen, aromatic compounds and phosphorus metabolism in the BIOLAK sludge were 2.50%, 2.28% and 1.56%, respectively, which were higher than those in the sludge of United States and Australia. Among four processes of nitrogen metabolism, denitrification-related genes were most abundant (80.81%), followed by ammonification (12.78%), nitrification,(4.38%) and nitrogen fixation (2.04%). In conclusion, the BIOLAK activated sludge had amazing biodiversity, meanwhile, functional genes involved in nitrogen, aromatic compounds and phosphorus metabolism were very abundant.


Asunto(s)
Biodiversidad , Metagenoma , Aguas del Alcantarillado/microbiología , Archaea , Bacterias , Nitrificación , Nitrógeno , Fósforo , Aguas Residuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA