Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(18)2021 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-33903240

RESUMEN

Inorganic semiconductor-based microscale light-emitting diodes (micro-LEDs) have been widely considered the key solution to next-generation, ubiquitous lighting and display systems, with their efficiency, brightness, contrast, stability, and dynamic response superior to liquid crystal or organic-based counterparts. However, the reduction of micro-LED sizes leads to the deteriorated device performance and increased difficulties in manufacturing. Here, we report a tandem device scheme based on stacked red, green, and blue (RGB) micro-LEDs, for the realization of full-color lighting and displays. Thin-film micro-LEDs (size ∼100 µm, thickness ∼5 µm) based on III-V compound semiconductors are vertically assembled via epitaxial liftoff and transfer printing. A thin-film dielectric-based optical filter serves as a wavelength-selective interface for performance enhancement. Furthermore, we prototype arrays of tandem RGB micro-LEDs and demonstrate display capabilities. These materials and device strategies provide a viable path to advanced lighting and display systems.

2.
Opt Lett ; 48(22): 5843-5846, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37966733

RESUMEN

The terahertz (THz) band has a great potential for the development of communication technology, but it has not been fully utilized due to the lack of practical devices, especially actively controllable multifunctional devices. Here, we propose and demonstrate a Ge2Sb2Te5 (GST)-based metamaterial device, where an actively controllable function is experimentally verified by inducing the crystallization process with thermal activation. Cross-polarization conversion in the reflection mode and circular-to-linear polarization conversion in the transmission mode are obtained under crystalline and amorphous GST conditions, respectively. The combination of GST and THz waves has a wide range of applications and will further advance the THz field.

3.
Opt Express ; 30(15): 28158-28169, 2022 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-36236969

RESUMEN

Various kinds of metasurfaces have been proposed because they can be tailored to achieve the desired modulations on electromagnetic wave that do not occur in nature. Compared to conventional metamaterials, coding metasurfaces integrated with information science theory possess numerous distinctive advantages - simple design, time-saving and compatibility with digital devices. Here we propose terahertz multifunctional anisotropic reflective metasurfaces with a metal-insulator-metal cavity structure whose top constructional layer consists of a pair of gold arc-rings and a gold cut-wire located between them. Two different functions of narrow-band absorption and broadband polarization conversion are realized based on different coding matrices using the binary codes '0' and '1'. Furthermore, we integrate a specific coding metasurface with vanadium dioxide (VO2) to realize a temperature-controlled active metasurface. Through the temperature change, dynamic functionalities switching between a narrow-band polarization converter with a polarization conversion ratio over 94% and an efficient low-pass filter are achieved under the phase transition of VO2, and the active metasurface is polarization independent. The proposed coding metasurfaces are verified numerically and experimentally, and have promising applications in terahertz modulation and functional devices.

4.
Appl Opt ; 61(19): 5799-5805, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-36255815

RESUMEN

We numerically and experimentally demonstrate a series of multilayer metamaterial filters in the terahertz region. The designed structure consists of multiple metal-polyimide composite layers and cyclic olefin copolymer layers. The transmission spectra of the filters are characterized by terahertz time-domain spectroscopy, and the measured results agree well with simulations. In addition, the mechanism of the multilayer structure is theoretically studied by a thin film multibeam interference model. The proposed filters exhibit high efficiency at passband and can be broadly utilized as compact devices in practical applications at terahertz frequencies.

5.
Small ; 13(32)2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28692769

RESUMEN

The combination of perovskite solar cells and quantum dot solar cells has significant potential due to the complementary nature of the two constituent materials. In this study, solar cells (SCs) with a hybrid CH3 NH3 PbI3 /SnS quantum dots (QDs) absorber layer are fabricated by a facile and universal in situ crystallization method, enabling easy embedding of the QDs in perovskite layer. Compared with SCs based on CH3 NH3 PbI3 , SCs using CH3 NH3 PbI3 /SnS QDs hybrid films as absorber achieves a 25% enhancement in efficiency, giving rise to an efficiency of 16.8%. The performance improvement can be attributed to the improved crystallinity of the absorber, enhanced photo-induced carriers' separation and transport within the absorber layer, and improved incident light utilization. The generality of the methods used in this work paves a universal pathway for preparing other perovskite/QDs hybrid materials and the synthesis of entire nontoxic perovskite/QDs hybrid structure.

6.
Sci Technol Adv Mater ; 18(1): 253-262, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28458747

RESUMEN

Although the two-step deposition (TSD) method is widely adopted for the high performance perovskite solar cells (PSCs), the CH3NH3PbI3 perovskite crystal growth mechanism during the TSD process and the photo-generated charge recombination dynamics in the mesoporous-TiO2 (mp-TiO2)/CH3NH3PbI3/hole transporting material (HTM) system remains unexploited. Herein, we modified the concentration of PbI2 (C(PbI2)) solution to control the perovskite crystal properties, and observed an abnormal CH3NH3PbI3 grain growth phenomenon atop mesoporous TiO2 film. To illustrate this abnormal grain growth mechanism, we propose that a grain ripening process is taking place during the transformation from PbI2 to CH3NH3PbI3, and discuss the PbI2 nuclei morphology, perovskite grain growing stage, as well as Pb:I atomic ratio difference among CH3NH3PbI3 grains with different morphology. These C(PbI2)-dependent perovskite morphologies resulted in varied charge carrier transfer properties throughout the mp-TiO2/CH3NH3PbI3/HTM hybrid, as illustrated by photoluminescence measurement. Furthermore, the effect of CH3NH3PbI3 morphology on light absorption and interfacial properties is investigated and correlated with the photovoltaic performance of PSCs.

8.
Adv Mater ; 36(14): e2308453, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38180283

RESUMEN

High-sensitive metasurface-based sensors are essential for effective substance detection and insightful bio-interaction studies, which compress light in subwavelength volumes to enhance light-matter interactions. However, current methods to improve sensing performance always focus on optimizing near-field response of individual meta-atom, and fingerprint recognition for bio-substances necessitates several pixelated metasurfaces to establish a quasi-continuous spectrum. Here, a novel sensing strategy is proposed to achieve Terahertz (THz) refractive sensing, and fingerprint recognition based on surface waves (SWs). Leveraging the long-range transmission, strong confinement, and interface sensitivity of SWs, a metasurface-supporting SWs excitation and propagation is experimentally verified to achieve sensing integrations. Through wide-band information collection of SWs, the proposed sensor not only facilitates refractive sensing up to 215.5°/RIU, but also enables the simultaneous resolution of multiple fingerprint information within a continuous spectrum. By covering 5 µm thickness of polyimide, quartz and silicon nitride layers, the maximum phase change of 91.1°, 101.8°, and 126.4° is experimentally obtained within THz band, respectively. Thus, this strategy broadens the research scope of metasurface-excited SWs and introduces a novel paradigm for ultrasensitive sensing functions.

9.
Adv Mater ; : e2407648, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38900369

RESUMEN

Anode-free lithium (Li) metal batteries are promising alternatives to current Li-ion batteries due to their advantages such as high energy density, low cost, and convenient production. However, the copper (Cu) current collector accounts for more than 25 wt% of the total weight of the anode-free battery without capacity contribution, which severely reduces the energy and power densities. Here, a new family of ultralight composite current collectors with a low areal density of 0.78 mg cm-2, representing significant weight reduction of 49%-91% compared with the Cu-based current collectors for high-energy Li batteries, is presented. Rational molecular engineering of the polyacylsemicarbazide substrate enables enhanced interfacial interaction with the sputtered Cu layer, which results in excellent interfacial stability, flexibility, and safety for the obtained anode-free batteries. The battery-level energy density has been significantly improved by 36%-61%, and a maximum rate capability reaches 5 C (10 mA cm-2) attributed to the homogeneous Li+ flux and smooth Li deposition on the nanostructured Cu layer. The results not only open a new avenue to improve the energy and power densities of anode-free batteries via composite current collector innovation but, in a broader context, provide a new paradigm to pursue high-performance, high-safety, and flexible batteries.

10.
Biosensors (Basel) ; 13(6)2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37366971

RESUMEN

Terahertz spectroscopy is a powerful tool for investigating the properties and states of biological matter. Here, a systematic investigation of the interaction of THz wave with "bright mode" resonators and "dark mode" resonators has been conducted, and a simple general principle of obtaining multiple resonant bands has been developed. By manipulating the number and positions of bright mode and dark mode resonant elements in metamaterials, we realized multi-resonant bands terahertz metamaterial structures with three electromagnetic-induced transparency in four-frequency bands. Different carbohydrates in the state of dried films were selected for detection, and the results showed that the multi-resonant bands metamaterial have high response sensitivity at the resonance frequency similar to the characteristic frequency of the biomolecule. Furthermore, by increasing the biomolecule mass in a specific frequency band, the frequency shift in glucose was found to be larger than that of maltose. The frequency shift in glucose in the fourth frequency band is larger than that of the second band, whereas maltose exhibits an opposing trend, thus enabling recognition of maltose and glucose. Our findings provide new insights into the design of functional multi-resonant bands metamaterials, as well as new strategies for developing multi-band metamaterial biosensing devices.


Asunto(s)
Maltosa , Espectroscopía de Terahertz , Glucosa
11.
Front Chem ; 10: 978078, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36072702

RESUMEN

Photocatalytic nitrogen reduction reaction (NRR) to ammonia holds a great promise for substituting the traditional energy-intensive Haber-Bosch process, which entails sunlight as an inexhaustible resource and water as a hydrogen source under mild conditions. Remarkable progress has been achieved regarding the activation and solar conversion of N2 to NH3 with the rapid development of emerging photocatalysts, but it still suffers from low efficiency. A comprehensive review on photocatalysts covering tungsten and related metals as well as their broad ranges of alloys and compounds is lacking. This article aims to summarize recent advances in this regard, focusing on the strategies to enhance the photocatalytic performance of tungsten and related metal semiconductors for the NRR. The fundamentals of solar-to-NH3 photocatalysis, reaction pathways, and NH3 quantification methods are presented, and the concomitant challenges are also revealed. Finally, we cast insights into the future development of sustainable NH3 production, and highlight some potential directions for further research in this vibrant field.

12.
Adv Sci (Weinh) ; 9(33): e2204205, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36253143

RESUMEN

Many challenges in the electrochemical synthesis of ammonia have been recognized with most effort focused on delineating false positives resulting from unidentified sources of nitrogen. However, the influence of oxidizing anolytes on the crossover and oxidization of ammonium during the electrolysis reaction remains unexplored. Here it is reported that the use of analytes containing halide ions (Cl- and Br- ) can rapidly convert the ammonium into N2 , which further intensifies the crossover of ammonium. Moreover, the extent of migration and oxidation of ammonium is found to be closely associated with external factors, such as applied potentials and the concentration of Cl- . These findings demonstrate the profound impact of oxidizing anolytes on the electrochemical synthesis of ammonia. Based on these results, many prior reported ammonia yield rates are calibrated. This work emphasizes the significance of avoiding selection of anolytes that can oxidize ammonium, which is believed to promote further progress in electrochemical nitrogen fixation.

13.
Chem Asian J ; 17(24): e202200997, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36282121

RESUMEN

Electrochemical CO2 reduction (ECR) is recognized as a sustainable and promising approach for the production of high-value chemicals. To facilitate widespread application of this technology, the design and construction of efficient cathodic electrocatalysts is critically important. Here we report the synthesis of atomically dispersed manganese on nitrogen-doped porous carbon (Mn SAs/NC) using a facile and scalable annealing method for catalyzing the ECR reaction. The as-obtained Mn SAs/NC delivers high activity and selectivity toward CO formation with a faradaic efficiency of 80.5±0.6%, over 5 times that of bare NC. The high activity is preserved even after 10 h of continuous polarization. The catalytic properties of our cost-effective Mn SAs/NC catalyst are readily tuned by regulating the nitrogen configurations and the percentage of Mn SAs via modulation of the nitrogen precursor and the thermal treatment conditions.

14.
Front Med (Lausanne) ; 9: 778620, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35308558

RESUMEN

Aims: Acute decompensated right heart failure (RHF) in chronic precapillary pulmonary hypertension is often typified by a swiftly progressive syndrome involving systemic congestion. This results from the impairment of the right ventricular filling and/or a reduction in the flow output of the right ventricle, which has been linked to a dismal prognosis of short duration. Despite this, there are limited therapeutic data regarding these acute incidents. This study examined the effect of levosimendan on acute decompensated RHF in patients with connective tissue disease-associated pulmonary arterial hypertension (CTD-PAH). Methods: This retrospective study included 87 patients with confirmed CTD-PAH complicated acute decompensated RHF between November 2015 and April 2021. We collected biological, clinical, and demographic data, as well as therapy data, from patients with acute decompensated RHF who required levosimendan treatment in the cardiac care unit (CCU) for CTD-PAH. The patients were divided into two groups according to the levosimendan treatment. Patient information between the two groups was systematically compared in hospital and at follow-up. Results: Oxygen saturation of mixed venose blood (SvO2), estimated glomerular filtration rate (eGFR), 24-h urine output, and tricuspid annular plane systolic excursion (TAPSE) were found to be considerably elevated in the levosimendan cohort compared with the control cohort. Patients in the levosimendan cohort exhibited considerably reduced levels of C-reactive protein (CRP), white blood cell (WBC), troponin I, creatinine, NT-proBNP, and RV diameter compared with those in the control cohort. A higher survival rate was observed in the levosimendan cohort. Conclusions: Levosimendan treatment could effectively improve acute decompensated RHF and systemic hemodynamics in CTD-PAH patients, with positive effects on survival in hospital and can, therefore, be considered as an alternative treatment option for improving clinical short-term outcomes.

15.
ACS Appl Mater Interfaces ; 10(21): 17861-17870, 2018 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-29726249

RESUMEN

Significant efforts have been devoted to enhancing both the performance and long-term stability of lead halide perovskite solar cells (PSCs) to promote their practical application. In this context, a self-assembled monolayer composed of a dye molecule is demonstrated for the first time to be efficient in passivating the surface of the hole transport layer, NiO x, in the p-i-n PSCs through multiple functions, including the minimization of energy-level offset, reducing surface trap states, and enhancing wetting between NiO x and perovskite layers coupled with increasing perovskite crystallinity. Consequently, the dye monolayer has sufficiently improved the hole extraction efficiency and suppressed the charge recombination, validated by steady and transient photoluminescence measurements and the electrochemical impedance analysis. Concurrently, a mixed layer of BaSnO3 nanoparticles and [6,6]-phenyl-C61-butyric acid methyl (PCBM) (barium stannate (BSO)/PCBM) was exploited as an efficient electron transport layer, resulting in superior electron transport properties and correspondingly excellent device stability. By incorporating these bifacial modifications, the device performance of the inverted PSC was propelled to 16.2%, compared with 14.0% for that without any interfacial and compositional engineering. Benefiting from the excellent crystallinity of the perovskite through dye passivation and the blocking of moisture, oxygen, and ion migration by using the hybrid BSO/PCBM layer, over 90% of the initial power conversion efficiency has been preserved for the device after exposure to ambient air for 650 h.

16.
ACS Appl Mater Interfaces ; 10(17): 14673-14683, 2018 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-29633826

RESUMEN

A smooth and compact light absorption perovskite layer is a highly desirable prerequisite for efficient planar perovskite solar cells. However, the rapid reaction between CH3NH3I methylammonium iodide (MAI) and PbI2 often leads to an inconsistent CH3NH3PbI3 crystal nucleation and growth rate along the film depth during the two-step sequential deposition process. Herein, a facile solvent additive strategy is reported to retard the crystallization kinetics of perovskite formation and accelerate the MAI diffusion across the PbI2 layer. It was found that the ultrasmooth perovskite thin film with narrow crystallite size variation can be achieved by introducing favorable solvent additives into the MAI solution. The effects of dimethylformamide, dimethyl sulfoxide, γ-butyrolactone, chlorobenzene, and diethyl ether additives on the morphological properties and cross-sectional crystallite size distribution were investigated using atomic force microscopy, X-ray diffraction, and scanning electron microscopy. Furthermore, the light absorption and band structure of the as-prepared CH3NH3PbI3 films were investigated and correlated with the photovoltaic performance of the equivalent solar cell devices. Details of perovskite nucleation and crystal growth processes are presented, which opens new avenues for the fabrication of more efficient planar solar cell devices with these ultrasmooth perovskite layers.

17.
ACS Appl Mater Interfaces ; 9(40): 34833-34843, 2017 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-28920436

RESUMEN

Electron-extraction layer (EEL) plays a critical role in determining the charge extraction and the power conversion efficiencies of the organometal-halide perovskite solar cells (PSCs). In this work, Ti-Fe-O ternary oxides were first developed to work as an efficient EEL in planar PSC. Compared with the widely used TiOx and the pure FeOx, the ternary composites show superior properties in multiple aspects including the excellent stability of the precursor solution, good coverage on the substrates, outstanding electrical properties, and suitable energy levels. By varying the Fe content from 0 to 100% in the Ti-Fe-O composites, the conductivity of the resultant compact layer was markedly improved, confirmed by consistent results from the conductive atomic force microscopy and the linear sweep voltammetry measurements. Meanwhile, the compositional engineering tunes the energy level alignment of the Ti-Fe-O EEL/CH3NH3PbI3 interface to a region that is favorable for obtaining excellent charge-extraction property. The combinational advantages of the Ti-Fe-O composites significantly improved the photovoltaic performance of the as-prepared solar cells. An increase of over 20% in the short-circuit current (JSC) density has been achieved due to a modified EEL conductivity and energy alignment with the perovskite layer. The reduction in the surface recombination and enhancement of the charge collection efficiency also result in about 15% increase in the fill factor. Notably, the device also showed remarkably alleviated hysteresis behavior, revealing a prominently inhibited surface recombination.

18.
ACS Appl Mater Interfaces ; 9(3): 2439-2448, 2017 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-28030764

RESUMEN

NiOx is a promising hole-transporting material for perovskite solar cells due to its high hole mobility, good stability, and easy processability. In this work, we employed a simple solution-processed NiOx film as the hole-transporting layer in perovskite solar cells. When the thickness of the perovskite layer increased from 270 to 380 nm, the light absorption and photogenerated carrier density were enhanced and the transporting distance of electron and hole would also increase at the same time, resulting in a large charge transfer resistance and a long hole-extracted process in the device, characterized by the UV-vis, photoluminescence, and electrochemical impedance spectroscopy spectra. Combining both of these factors, an optimal thickness of 334.2 nm was prepared with the perovskite precursor concentration of 1.35 M. Moreover, the optimal device fabrication conditions were further achieved by optimizing the thickness of NiOx hole-transporting layer and PCBM electron selective layer. As a result, the best power conversion efficiency of 15.71% was obtained with a Jsc of 20.51 mA·cm-2, a Voc of 988 mV, and a FF of 77.51% with almost no hysteresis. A stable efficiency of 15.10% was caught at the maximum power point. This work provides a promising route to achieve higher efficiency perovskite solar cells based on NiO or other inorganic hole-transporting materials.

19.
Nanoscale ; 6(6): 3376-83, 2014 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-24525520

RESUMEN

3D hierarchical cobalt hydroxide carbonate hydrate (Co(CO3)0.5(OH)·0.11H2O) has been synthesized featuring a hollow urchin-like structure by a one-step hydrothermal method at modest temperature on FTO glass substrates. The functionalities of precursor surfactants were isolated and analyzed. A plausible formation mechanism of the spherical urchin-like microclusters has been furnished through time-dependent investigations. Introduction of other transitional metal doping (Cu, Ni) would give rise to a substantial morphological change associated with a surface area drop. The directly grown cobalt-based hydroxide composite electrodes were found to be capable of catalyzing oxygen evolution reaction (OER) under both neutral pH and alkaline conditions. The favorable 3D dendritic morphology and porous structure provide large surface areas and possible defect sites that are likely responsible for their robust electrochemical activity.


Asunto(s)
Cobalto/química , Hidróxidos/química , Microesferas , Agua/química , Técnicas Electroquímicas , Concentración de Iones de Hidrógeno , Nanoestructuras/química , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA