Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Med Genet A ; 191(6): 1599-1606, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36896486

RESUMEN

Mitochondrial respiratory chain disorders (MRC) are amongst the most common group of inborn errors of metabolism. MRC, of which complex I deficiency accounts for approximately a quarter, are very diverse, causing a wide range of clinical problems and can be difficult to diagnose. We report an illustrative MRC case whose diagnosis was elusive. Clinical signs included failure to thrive caused by recurrent vomiting, hypotonia and progressive loss of motor milestones. Initial brain imaging suggested Leigh syndrome but without expected diffusion restriction. Muscle respiratory chain enzymology was unremarkable. Whole-genome sequencing identified a maternally inherited NDUFV1 missense variant [NM_007103.4 (NDUFV1):c.1157G > A; p.(Arg386His)] and a paternally inherited synonymous variant [NM_007103.4 (NDUFV1):c.1080G > A; (p.Ser360=)]. RNA sequencing demonstrated aberrant splicing. This case emphasizes the diagnostic odyssey of a patient in whom a confirmed diagnosis was elusive because of atypical features and normal muscle respiratory chain enzyme (RCE) activities, along with a synonymous variant, which are often filtered out from genomic analyses. It also illustrates the following points: (1) complete resolution of magnetic resonance imaging changes may be part of the picture in mitochondrial disease; (2) analysis for synonymous variants is important for undiagnosed patients; and (3) RNA-seq is a powerful tool to demonstrate pathogenicity of putative splicing variants.


Asunto(s)
Imagen por Resonancia Magnética , Músculos , Humanos , RNA-Seq , Secuenciación Completa del Genoma , Encéfalo , Complejo I de Transporte de Electrón/genética
2.
J Inherit Metab Dis ; 46(2): 313-325, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36651519

RESUMEN

Congenital disorders of glycosylation (CDG) are a clinically and biochemically heterogeneous subgroup of inherited metabolic disorders. Most CDG with abnormal N-glycosylation can be detected by transferrin screening, however, MOGS-CDG escapes this routine screening. Combined with the clinical heterogeneity of reported cases, diagnosing MOGS-CDG can be challenging. Here, we clinically characterize ten MOGS-CDG cases including six previously unreported individuals, showing a phenotype characterized by dysmorphic features, global developmental delay, muscular hypotonia, and seizures in all patients and in a minority vision problems and hypogammaglobulinemia. Glycomics confirmed accumulation of a Glc3 Man7 GlcNAc2 glycan in plasma. For quantification of the diagnostic Glcα1-3Glcα1-3Glcα1-2Man tetrasaccharide in urine, we developed and validated a liquid chromatography-mass spectrometry method of 2-aminobenzoic acid (2AA) labeled urinary glycans. As an internal standard, isotopically labeled 13 C6 -2AA Glc3 Man was used, while labeling efficiency was controlled by use of 12 C6 -2AA and 13 C6 -2AA labeled laminaritetraose. Recovery, linearity, intra- and interassay coefficients of variability of these labeled compounds were determined. Furthermore, Glc3 Man was specifically identified by retention time matching against authentic MOGS-CDG urine and compared with Pompe urine. Glc3 Man was increased in all six analyzed cases, ranging from 34.1 to 618.0 µmol/mmol creatinine (reference <5 µmol). In short, MOGS-CDG has a broad manifestation of symptoms but can be diagnosed with the use of a quantitative method for analysis of urinary Glc3 Man excretion.


Asunto(s)
Trastornos Congénitos de Glicosilación , Humanos , Trastornos Congénitos de Glicosilación/genética , Espectrometría de Masas/métodos , Oligosacáridos/metabolismo , Polisacáridos , Convulsiones
3.
Mol Genet Metab ; 135(1): 63-71, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34991945

RESUMEN

Several studies have shown serum fibroblast growth factor 21 (FGF21) and growth differentiation factor 15 (GDF15) levels are elevated in patients with mitochondrial disease (MD) where myopathy is a feature. In this study we investigated the utility of FGF21 and GDF15 as biomarkers for MD in a phenotypically and genotypically diverse pediatric cohort with suspected MD against a panel of healthy controls and non-mitochondrial disease controls with some overlapping clinical features. Serum was collected from 56 children with MD, 104 children with non-mitochondrial disease (27 neuromuscular, 26 cardiac, 21 hepatic, 30 renal) and 30 pediatric controls. Serum FGF21 and GDF15 concentrations were measured using ELISA, and their ability to detect MD was determined. Median FGF21 and GDF15 serum concentrations were elevated 17-fold and 3-fold respectively in pediatric MD patients compared to the healthy control group. Non-mitochondrial disease controls had elevated serum GDF15 concentrations while FGF21 concentrations were in the normal range. Elevation of GDF15 in a range of non-mitochondrial pediatric disorders limits its use as a MD biomarker. FGF21 was elevated in MD patients with a spectrum of clinical phenotypes, including those without myopathy. Serum FGF21 had an area under the receiver operating characteristic curve of 0.87, indicating good ability to discriminate between pediatric MD and healthy and non-mitochondrial disease controls. Triaging of pediatric MD patients by clinical phenotyping and serum FGF21 testing, followed by massively parallel sequencing, may enable more rapid diagnosis of pediatric MD.


Asunto(s)
Factor 15 de Diferenciación de Crecimiento , Enfermedades Mitocondriales , Biomarcadores , Niño , Factores de Crecimiento de Fibroblastos/genética , Factor 15 de Diferenciación de Crecimiento/genética , Humanos , Enfermedades Mitocondriales/diagnóstico , Enfermedades Mitocondriales/genética
4.
Mol Genet Metab ; 137(1-2): 62-67, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35926322

RESUMEN

BACKGROUND: Beta-ureidopropionase deficiency, caused by variants in UPB1, has been reported in association with various neurodevelopmental phenotypes including intellectual disability, seizures and autism. AIM: We aimed to reassess the relationship between variants in UPB1 and a clinical phenotype. METHODS: Literature review, calculation of carrier frequencies from population databases, long-term follow-up of a previously published case and reporting of additional cases. RESULTS: Fifty-three published cases were identified, and two additional cases are reported here. Of these, 14 were asymptomatic and four had transient neurological features; clinical features in the remainder were variable and included non-neurological presentations. Several of the variants previously reported as pathogenic are present in population databases at frequencies higher than expected for a rare condition. In particular, the variant most frequently reported as pathogenic, p.Arg326Gln, is very common among East Asians, with a carrier frequency of 1 in 19 and 1 in 907 being homozygous for the variant in gnomAD v2.1.1. CONCLUSION: Pending the availability of further evidence, UPB1 should be considered a 'gene of uncertain clinical significance'. Caution should be used in ascribing clinical significance to biochemical features of beta-ureidopropionase deficiency and/or UPB1 variants in patients with neurodevelopmental phenotypes. UPB1 is not currently suitable for inclusion in gene panels for reproductive genetic carrier screening. SYNOPSIS: The relationship between beta-ureidopropionase deficiency due to UPB1 variants and clinical phenotypes is uncertain.


Asunto(s)
Trastornos del Movimiento , Errores Innatos del Metabolismo de la Purina-Pirimidina , Humanos , Encefalopatías/diagnóstico , Encefalopatías/genética , Trastornos del Movimiento/diagnóstico , Trastornos del Movimiento/genética , Fenotipo , Errores Innatos del Metabolismo de la Purina-Pirimidina/diagnóstico , Errores Innatos del Metabolismo de la Purina-Pirimidina/genética , Amidohidrolasas/genética
5.
J Paediatr Child Health ; 56(8): 1210-1218, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32329550

RESUMEN

AIM: Late infantile neuronal ceroid lipofuscinosis type 2 (CLN2) disease is a rare neurodegenerative disorder presenting in children aged 2-4 years with seizures and loss of motor and language skills, followed by blindness and death in late childhood. Initial presenting features are similar to a range of common epilepsies. We aim to highlight typical clinical and radiological features that may prompt diagnosis of CLN2 disease in early disease stages. METHODS: We present a series of 13 Australian patients with CLN2 disease, describing clinical features, disease evolution, neuroimaging, electroencephalogram, biochemical and genetic results. Expert neuroradiological magnetic resonance imaging (MRI) analysis was retrospectively performed on 10 cases. RESULTS: Twelve patients presented with seizures, with initial seizures being focal (n = 4), generalised tonic-clonic (n = 3), absence (n = 3) and febrile (n = 2). Eleven patients (85%) had a language delay before the onset of seizures. Cerebellar or cerebral atrophy was noted in all patients on centralised MRI review, with abnormalities of the brain-stem, ventricles, corpus callosum and hippocampi. CONCLUSIONS: Early language delay with the onset of seizures at 2-4 years of age is the hallmark of CLN2 disease. MRI findings of early subtle atrophy in the cerebellum or posterior cortical regions should hasten testing for CLN2 disease to enable early initiation of enzyme replacement therapy.


Asunto(s)
Lipofuscinosis Ceroideas Neuronales , Australia , Encéfalo/diagnóstico por imagen , Niño , Preescolar , Electroencefalografía , Humanos , Lipofuscinosis Ceroideas Neuronales/diagnóstico por imagen , Estudios Retrospectivos , Tripeptidil Peptidasa 1
6.
Am J Hum Genet ; 96(2): 245-57, 2015 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-25597510

RESUMEN

We studied a group of individuals with elevated urinary excretion of 3-methylglutaconic acid, neutropenia that can develop into leukemia, a neurological phenotype ranging from nonprogressive intellectual disability to a prenatal encephalopathy with progressive brain atrophy, movement disorder, cataracts, and early death. Exome sequencing of two unrelated individuals and subsequent Sanger sequencing of 16 individuals with an overlapping phenotype identified a total of 14 rare, predicted deleterious alleles in CLPB in 14 individuals from 9 unrelated families. CLPB encodes caseinolytic peptidase B homolog ClpB, a member of the AAA+ protein family. To evaluate the relevance of CLPB in the pathogenesis of this syndrome, we developed a zebrafish model and an in vitro assay to measure ATPase activity. Suppression of clpb in zebrafish embryos induced a central nervous system phenotype that was consistent with cerebellar and cerebral atrophy that could be rescued by wild-type, but not mutant, human CLPB mRNA. Consistent with these data, the loss-of-function effect of one of the identified variants (c.1222A>G [p.Arg408Gly]) was supported further by in vitro evidence with the mutant peptides abolishing ATPase function. Additionally, we show that CLPB interacts biochemically with ATP2A2, known to be involved in apoptotic processes in severe congenital neutropenia (SCN) 3 (Kostmann disease [caused by HAX1 mutations]). Taken together, mutations in CLPB define a syndrome with intellectual disability, congenital neutropenia, progressive brain atrophy, movement disorder, cataracts, and 3-methylglutaconic aciduria.


Asunto(s)
Anomalías Múltiples/genética , Encéfalo/patología , Endopeptidasa Clp/genética , Discapacidad Intelectual/genética , Errores Innatos del Metabolismo/genética , Anomalías Múltiples/patología , Adenosina Trifosfatasas/metabolismo , Animales , Atrofia/genética , Atrofia/patología , Secuencia de Bases , Catarata/genética , Catarata/patología , Endopeptidasa Clp/metabolismo , Exoma/genética , Humanos , Discapacidad Intelectual/patología , Errores Innatos del Metabolismo/patología , Datos de Secuencia Molecular , Trastornos del Movimiento/genética , Trastornos del Movimiento/patología , Neutropenia/genética , Neutropenia/patología , Polimorfismo de Nucleótido Simple/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Análisis de Secuencia de ADN , Pez Cebra
8.
Am J Hum Genet ; 94(5): 784-9, 2014 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-24791903

RESUMEN

Clinical whole-exome sequencing (WES) for identification of mutations leading to Mendelian disease has been offered to the medical community since 2011. Clinically undiagnosed neurological disorders are the most frequent basis for test referral, and currently, approximately 25% of such cases are diagnosed at the molecular level. To date, there are approximately 4,000 "known" disease-associated loci, and many are associated with striking dysmorphic features, making genotype-phenotype correlations relatively straightforward. A significant fraction of cases, however, lack characteristic dysmorphism or clinical pathognomonic traits and are dependent upon molecular tests for definitive diagnoses. Further, many molecular diagnoses are guided by recent gene-disease association discoveries. Hence, there is a critical interplay between clinical testing and research leading to gene-disease association discovery. Here, we describe four probands, all of whom presented with hypotonia, intellectual disability, global developmental delay, and mildly dysmorphic facial features. Three of the four also had sleep apnea. Each was a simplex case without a remarkable family history. Using WES, we identified AHDC1 de novo truncating mutations that most likely cause this genetic syndrome.


Asunto(s)
Proteínas de Unión al ADN/genética , Discapacidad Intelectual/genética , Trastornos del Desarrollo del Lenguaje/genética , Hipotonía Muscular/genética , Síndromes de la Apnea del Sueño/genética , Niño , Preescolar , Exoma/genética , Femenino , Humanos , Lactante , Masculino , Mutación , Síndrome
9.
Am J Hum Genet ; 94(3): 453-61, 2014 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-24530203

RESUMEN

Four children in three unrelated families (one consanguineous) presented with lethargy, hyperlactatemia, and hyperammonemia of unexplained origin during the neonatal period and early childhood. We identified and validated three different CA5A alterations, including a homozygous missense mutation (c.697T>C) in two siblings, a homozygous splice site mutation (c.555G>A) leading to skipping of exon 4, and a homozygous 4 kb deletion of exon 6. The deleterious nature of the homozygous mutation c.697T>C (p.Ser233Pro) was demonstrated by reduced enzymatic activity and increased temperature sensitivity. Carbonic anhydrase VA (CA-VA) was absent in liver in the child with the homozygous exon 6 deletion. The metabolite profiles in the affected individuals fit CA-VA deficiency, showing evidence of impaired provision of bicarbonate to the four enzymes that participate in key pathways in intermediary metabolism: carbamoylphosphate synthetase 1 (urea cycle), pyruvate carboxylase (anaplerosis, gluconeogenesis), propionyl-CoA carboxylase, and 3-methylcrotonyl-CoA carboxylase (branched chain amino acids catabolism). In the three children who were administered carglumic acid, hyperammonemia resolved. CA-VA deficiency should therefore be added to urea cycle defects, organic acidurias, and pyruvate carboxylase deficiency as a treatable condition in the differential diagnosis of hyperammonemia in the neonate and young child.


Asunto(s)
Anhidrasa Carbónica V/deficiencia , Anhidrasa Carbónica V/genética , Hiperamonemia/genética , Adolescente , Secuencia de Bases , Niño , Preescolar , Exones , Femenino , Eliminación de Gen , Variación Genética , Homocigoto , Humanos , Hiperamonemia/terapia , Lactante , Hígado/enzimología , Masculino , Datos de Secuencia Molecular , Mutación Missense , Linaje , Análisis de Secuencia de ADN , Temperatura
10.
Cogn Neuropsychol ; 34(6): 347-356, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-29210605

RESUMEN

Mucopolysaccharidosis Type II (MPS II) or Hunter Syndrome is a rare X-linked condition, due to a defect in a lysosomal enzyme involved in the breakdown of glycosaminoglycans. It is a progressive condition with worsening over time; however, symptom severity and progression rates vary. Normal intellectual function has been reported in males with mild MPS II but few studies are available that provide comprehensive cognitive profiles. Enzyme replacement therapy (ERT) can stabilize physical symptoms and has become standard treatment. Whether ERT can influence cognition is currently unknown. Considering this, we conducted cognitive, fine motor, and behavioural assessments with three males (7;6-12;1 years) with mild MPS II before and after ERT. Generally, cognition, fine motor skills, and behaviour were in the normal range; however, specific deficits in attention and executive function were identified. Following ERT, some memory improvements were seen. Executive deficits remained, and processing speed declined over time.


Asunto(s)
Atención , Cognición , Función Ejecutiva , Mucopolisacaridosis II/psicología , Niño , Progresión de la Enfermedad , Terapia de Reemplazo Enzimático , Humanos , Iduronato Sulfatasa/metabolismo , Lactante , Masculino , Memoria , Mucopolisacaridosis II/enzimología , Mucopolisacaridosis II/terapia
11.
J Inherit Metab Dis ; 40(6): 853-860, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28687938

RESUMEN

Recently, CLPB deficiency has been shown to cause a genetic syndrome with cataracts, neutropenia, and 3-methylglutaconic aciduria. Surprisingly, the neurological presentation ranges from completely unaffected to patients with virtual absence of development. Muscular hypo- and hypertonia, movement disorder and progressive brain atrophy are frequently reported. We present the foetal, peri- and neonatal features of 31 patients, of which five are previously unreported, using a newly developed clinical severity scoring system rating the clinical, metabolic, imaging and other findings weighted by the age of onset. Our data are illustrated by foetal and neonatal videos. The patients were classified as having a mild (n = 4), moderate (n = 13) or severe (n = 14) disease phenotype. The most striking feature of the severe subtype was the neonatal absence of voluntary movements in combination with ventilator dependency and hyperexcitability. The foetal and neonatal presentation mirrored the course of disease with respect to survival (current median age 17.5 years in the mild group, median age of death 35 days in the severe group), severity and age of onset of all findings evaluated. CLPB deficiency should be considered in neonates with absence of voluntary movements, respiratory insufficiency and swallowing problems, especially if associated with 3-methylglutaconic aciduria, neutropenia and cataracts. Being an important differential diagnosis of hyperekplexia (exaggerated startle responses), we advise performing urinary organic acid analysis, blood cell counts and ophthalmological examination in these patients. The neonatal presentation of CLPB deficiency predicts the course of disease in later life, which is extremely important for counselling.


Asunto(s)
Catarata/metabolismo , Endopeptidasa Clp/deficiencia , Errores Innatos del Metabolismo/metabolismo , Neutropenia/metabolismo , Adolescente , Adulto , Atrofia/metabolismo , Encefalopatías , Niño , Preescolar , Femenino , Feto/metabolismo , Humanos , Hiperekplexia/metabolismo , Lactante , Recién Nacido , Masculino , Trastornos del Movimiento/metabolismo , Fenotipo , Adulto Joven
12.
Hum Mutat ; 37(7): 653-60, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26931382

RESUMEN

Congenital disorders of glycosylation (CDG) arise from pathogenic mutations in over 100 genes leading to impaired protein or lipid glycosylation. ALG1 encodes a ß1,4 mannosyltransferase that catalyzes the addition of the first of nine mannose moieties to form a dolichol-lipid linked oligosaccharide intermediate required for proper N-linked glycosylation. ALG1 mutations cause a rare autosomal recessive disorder termed ALG1-CDG. To date 13 mutations in 18 patients from 14 families have been described with varying degrees of clinical severity. We identified and characterized 39 previously unreported cases of ALG1-CDG from 32 families and add 26 new mutations. Pathogenicity of each mutation was confirmed based on its inability to rescue impaired growth or hypoglycosylation of a standard biomarker in an alg1-deficient yeast strain. Using this approach we could not establish a rank order comparison of biomarker glycosylation and patient phenotype, but we identified mutations with a lethal outcome in the first two years of life. The recently identified protein-linked xeno-tetrasaccharide biomarker, NeuAc-Gal-GlcNAc2 , was seen in all 27 patients tested. Our study triples the number of known patients and expands the molecular and clinical correlates of this disorder.


Asunto(s)
Trastornos Congénitos de Glicosilación/genética , Manosiltransferasas/genética , Mutación , Polisacáridos/metabolismo , Biomarcadores/metabolismo , Trastornos Congénitos de Glicosilación/metabolismo , Femenino , Genes Letales , Glicosilación , Humanos , Masculino , Análisis de Secuencia de ADN , Análisis de Supervivencia
13.
Genet Med ; 18(11): 1090-1096, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-26938784

RESUMEN

PURPOSE: To prospectively evaluate the diagnostic and clinical utility of singleton whole-exome sequencing (WES) as a first-tier test in infants with suspected monogenic disease. METHODS: Singleton WES was performed as a first-tier sequencing test in infants recruited from a single pediatric tertiary center. This occurred in parallel with standard investigations, including single- or multigene panel sequencing when clinically indicated. The diagnosis rate, clinical utility, and impact on management of singleton WES were evaluated. RESULTS: Of 80 enrolled infants, 46 received a molecular genetic diagnosis through singleton WES (57.5%) compared with 11 (13.75%) who underwent standard investigations in the same patient group. Clinical management changed following exome diagnosis in 15 of 46 diagnosed participants (32.6%). Twelve relatives received a genetic diagnosis following cascade testing, and 28 couples were identified as being at high risk of recurrence in future pregnancies. CONCLUSIONS: This prospective study provides strong evidence for increased diagnostic and clinical utility of singleton WES as a first-tier sequencing test for infants with a suspected monogenic disorder. Singleton WES outperformed standard care in terms of diagnosis rate and the benefits of a diagnosis, namely, impact on management of the child and clarification of reproductive risks for the extended family in a timely manner.Genet Med 18 11, 1090-1096.


Asunto(s)
Enfermedades Genéticas Congénitas/diagnóstico , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Patología Molecular , Exoma/genética , Enfermedades Genéticas Congénitas/genética , Humanos , Recién Nacido
14.
J Inherit Metab Dis ; 38(3): 459-66, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25511235

RESUMEN

Mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase (HMCS2) deficiency results in episodes of hypoglycemia and increases in fatty acid metabolites. Metabolite abnormalities described to date in HMCS2 deficiency are nonspecific and overlap with other inborn errors of metabolism, making the biochemical diagnosis of HMCS2 deficiency difficult. Urinary organic acid profiles from periods of metabolic decompensation were studied in detail in HMCS2-deficient patients from four families. An additional six unrelated patients were identified from clinical presentation and/or qualitative identification of abnormal organic acids. The diagnosis was confirmed by sequencing and deletion/duplication analysis of the HMGCS2 gene. Seven related novel organic acids were identified in urine profiles. Five of them (3,5-dihydroxyhexanoic 1,5 lactone; trans-5-hydroxyhex-2-enoate; 4-hydroxy-6-methyl-2-pyrone; 5-hydroxy-3-ketohexanoate; 3,5-dihydroxyhexanoate) were identified by comparison with synthesized or commercial authentic compounds. We provisionally identified trans-3-hydroxyhex-4-enoate and 3-hydroxy-5-ketohexanoate by their mass spectral characteristics. These metabolites were found in samples taken during periods of decompensation and normalized when patients recovered. When cutoffs of adipic >200 and 4-hydroxy-6-methyl-2-pyrone >20 µmol/mmol creatinine were applied, all eight samples taken from five HMCS2-deficient patients during episodes of decompensation were flagged with a positive predictive value of 80% (95% confidence interval 35-100%). Some ketotic patients had increased 4-hydroxy-6-methyl-2-pyrone. Molecular studies identified a total of 12 novel mutations, including a large deletion of HMGCS2 exon 1 in two families, highlighting the need to perform quantitative gene analyses. There are now 26 known HMGCS2 mutations, which are reviewed in the text. 4-Hydroxy-6-methyl-2-pyrone and related metabolites are markers for HMCS2 deficiency. Detection of these metabolites will streamline the biochemical diagnosis of this disorder.


Asunto(s)
Acilcoenzima A/deficiencia , Acilcoenzima A/genética , Ácidos Grasos/genética , Hipoglucemia/genética , Cetosis/genética , Pironas/orina , Exones , Cromatografía de Gases y Espectrometría de Masas , Humanos , Mutación
15.
Brain ; 137(Pt 11): 2903-8, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25125611

RESUMEN

Two siblings with fatal Leigh disease had increased excretion of S-(2-carboxypropyl)cysteine and several other metabolites that are features of 3-hydroxyisobutyryl-CoA hydrolase (HIBCH) deficiency, a rare defect in the valine catabolic pathway associated with Leigh-like disease. However, this diagnosis was excluded by HIBCH sequencing and normal enzyme activity. In contrast to HIBCH deficiency, the excretion of 3-hydroxyisobutyryl-carnitine was normal in the children, suggesting deficiency of short-chain enoyl-CoA hydratase (ECHS1 gene). This mitochondrial enzyme is active in several metabolic pathways involving fatty acids and amino acids, including valine, and is immediately upstream of HIBCH in the valine pathway. Both children were compound heterozygous for a c.473C > A (p.A158D) missense mutation and a c.414+3G>C splicing mutation in ECHS1. ECHS1 activity was markedly decreased in cultured fibroblasts from both siblings, ECHS1 protein was undetectable by immunoblot analysis and transfection of patient cells with wild-type ECHS1 rescued ECHS1 activity. The highly reactive metabolites methacrylyl-CoA and acryloyl-CoA accumulate in deficiencies of both ECHS1 and HIBCH and are probably responsible for the brain pathology in both disorders. Deficiency of ECHS1 or HIBCH should be considered in children with Leigh disease. Urine metabolite testing can detect and distinguish between these two disorders.


Asunto(s)
Enoil-CoA Hidratasa/genética , Enfermedad de Leigh/genética , Redes y Vías Metabólicas/genética , Valina/metabolismo , Enoil-CoA Hidratasa/deficiencia , Resultado Fatal , Femenino , Humanos , Lactante , Enfermedad de Leigh/diagnóstico , Enfermedad de Leigh/metabolismo , Masculino , Mutación/genética , Hermanos , Tioléster Hidrolasas/deficiencia , Tioléster Hidrolasas/genética
17.
JIMD Rep ; 65(4): 239-248, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38974610

RESUMEN

Familial chylomicronemia syndrome (FCS) is a rare disorder of triglyceride (TG) metabolism caused by loss of function variants in one of five known canonical genes involved in chylomicron lipolysis and clearance-LPL, APOC2, APOA5, LMF1, and GPIHBP1. Pathogenic variants in LPL, which encodes the hydrolytic enzyme lipoprotein lipase, account for over 80%-90% of cases. FCS may present in infancy with hypertriglyceridemia-induced acute pancreatitis and is challenging to manage both acutely and in the long-term. Here, we report our experience managing two unrelated infants consecutively diagnosed with hypertriglyceridemia-induced acute pancreatitis caused by LPL deficiency. Both had elevated TGs at presentation (205 and 30 mmol/L, respectively) and molecular genetic testing confirmed each infant carried a different homozygous pathogenic variant in the LPL gene, specifically, c.987C>A (p.Tyr329Ter) and c.632C>A (p.Thr211Lys). The more severely affected infant had cutaneous xanthomata, lipemia retinalis and lipemic plasma at presentation, and required management in an intensive care setting. Acute stabilisation was achieved using insulin and heparin infusions together with the iterative implementation of a fat-restricted diet, low in long chain triglycerides (LCT) and supplemented with medium chain triglycerides (MCT). In both cases, provision of adequate caloric intake (~110-120 kcal/kg/day) was also found to be important for a sustained TG reduction during the acute phase of management. In summary, a high index of suspicion is required to diagnose FCS in infants with hypertriglyceridemia-induced acute pancreatitis, management of which can be challenging, highlighting the need for more evidence-based recommendations.

18.
Mol Genet Metab ; 108(3): 161-5, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23403242

RESUMEN

BACKGROUND: Urea cycle disorders (UCD) are caused by genetic defects in enzymes that constitute the hepatic ammonia detoxification pathway. Patients may present with variable clinical manifestations and with hyperammonaemia. Liver abnormalities have been associated with UCD, but only a few reports on the histopathological findings in the liver of UCD patients have been published. METHODS: We conducted a retrospective review of liver biopsies, ex-planted livers and livers at post-mortem of patients with UCD. A single pathologist reviewed all specimens. RESULTS: There were 18 liver samples from 13 patients with confirmed UCD: four ex-planted livers from patients with Ornithine Transcarbamylase (OTC) (n=3) and Carbamoyl Phosphate Synthetase 1 (CPS 1) (n=1) deficiencies, eight post-mortem samples from patients with CPS 1 (n=2), OTC (n=4), Argininosuccinate Synthetase (ASS) (n=1) and Argininosuccinate Lyase (ASL) (n=1) deficiencies, and six liver biopsies, three of which came from one patient with ASL deficiency. The other three liver biopsies were from patients who subsequently received liver transplantation. Histopathological findings in samples from neonates were non-specific. Samples from three late onset OTC deficient and one ASL deficient patients showed thin fibrous septa with portal to portal bridging fibrosis and focal marked enlargement and pallor of the hepatocytes due to accumulation of glycogen particles, resembling glycogenosis and resulting in a prominent nodular pattern. Serial liver biopsies in four UCD patients with interval between samples ranging from 1 year 2 months to 17 years showed progression in fibrosis in one OTC and one ASL deficient patients. Moderate fatty changes to no progression in liver disease were noted in the two patients (OTC=1 and CPS=1). A variety of non-specific features such as fatty change, mild inflammation, cholestasis and focal necrosis were seen in the other UCD patients. CONCLUSIONS: Histopathological changes in livers from neonates with UCD are non-specific. Older patients with UCD seem to show variable hepatic fibrosis compared to those who died early. Some of these patients also show focal and superficial resemblance to a glycogen storage disorder and cirrhosis. However, progression of these changes seems to be slow. To clarify the long term consequence of these changes, more extensive periods of follow up in a larger population series is needed.


Asunto(s)
Argininosuccinato Sintasa/deficiencia , Aciduria Argininosuccínica/patología , Carbamoil-Fosfato Sintasa (Amoniaco)/deficiencia , Hepatocitos/patología , Hiperamonemia/patología , Hígado/patología , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/patología , Aciduria Argininosuccínica/complicaciones , Aciduria Argininosuccínica/metabolismo , Autopsia , Biopsia , Niño , Preescolar , Ácidos Grasos/metabolismo , Femenino , Hepatocitos/metabolismo , Histocitoquímica , Humanos , Hiperamonemia/complicaciones , Hiperamonemia/metabolismo , Lactante , Recién Nacido , Hígado/metabolismo , Trasplante de Hígado , Masculino , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/complicaciones , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/metabolismo
19.
Mol Genet Metab ; 110(1-2): 170-5, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23791010

RESUMEN

Congenital disorders of glycosylation (CDG) represent an expanding family of metabolic disorders with a wide range of biochemical, molecular and clinical phenotypes. ALG3-CDG (CDG-Id), due to a defect in endoplasmic reticulum (ER) mannosyltransferase VI, is one of the less common types of CDG-I. We describe two Vietnamese siblings with confirmed ALG3-CDG (CDG-Id) by molecular testing. As far as we are aware, they are the oldest reported patients in the literature at 15 and 21years. They share similar clinical features with previously reported patients including facial dysmorphism, severe psychomotor retardation, microcephaly, seizures, and gastrointestinal symptoms. Furthermore, our sibling pair highlights the intrafamilial variability, the natural clinical course of ALG3-CDG (CDG-Id) and the benefit of reassessing patients with undiagnosed and complex syndromes, particularly when they present with neurological deterioration.


Asunto(s)
Trastornos Congénitos de Glicosilación/genética , Retículo Endoplásmico/genética , Manosiltransferasas/genética , Microcefalia/genética , Adolescente , Adulto , Trastornos Congénitos de Glicosilación/diagnóstico por imagen , Trastornos Congénitos de Glicosilación/patología , Retículo Endoplásmico/enzimología , Humanos , Lactante , Masculino , Microcefalia/diagnóstico , Microcefalia/patología , Mutación , Fenotipo , Radiografía , Hermanos
20.
JIMD Rep ; 64(5): 337-345, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37701323

RESUMEN

Contiguous ABCD1/ DXS1357E deletion syndrome (CADDS) is a rare deletion syndrome involving two contiguous genes on Xq28, ABCD1 and BCAP31 (formerly known as DXS1357E). Only nine individuals with this diagnosis have been reported in the medical literature to date. Intragenic loss-of-function variants in BCAP31 cause the deafness, dystonia, and cerebral hypomyelination syndrome (DDCH). Isolated pathogenic intragenic variants in ABCD1 are associated with the most common peroxisomal disorder, X-linked adrenoleukodystrophy (X-ALD), a single transporter deficiency, which in its more severe cerebral form is characterised by childhood-onset neurodegeneration and high levels of very-long-chain fatty acids (VLCFA). While increased VLCFA levels also feature in CADDS, the few patients described to date all presented as neonates with a severe phenotype. Here we report a tenth individual with CADDS, a male infant with dysmorphic facial features who was diagnosed through ultra-rapid whole genome sequencing (WGS) in the setting of persistent cholestatic liver disease, sensorineural hearing loss, hypotonia and growth failure and developmental delay. Biochemical studies showed elevated VLCFA and mildly reduced plasmalogens. He died at 7 months having developed pancreatic exocrine deficiency and interstitial lung disease, two features we propose to be possible extensions to the CADDS phenotype. We also review the genetic, phenotypic, and biochemical features in previously reported individuals with CADDS.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA