Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Opt Express ; 29(6): 9465-9473, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33820374

RESUMEN

We report the spatiotemporal mode-locked multimode fiber laser operating at 1.55 µm based on semiconductor saturable absorber mirrors with the mode-locking threshold as low as 104 mW. Benefiting from the multimode interference filtering effect introduced in the laser cavity not only the central wavelength can be continuously tuned from 1557 nm to 1567 nm, but also the number of the output pulses can be adjusted from 1 to 4 by simply adjusting the polarization controllers. This work provides a new platform for exploring the dynamic characteristics of spatiotemporal mode-locked pulses at negative dispersion regime. Moreover, this kind of tunable laser has potential applications in fields of all-optical signal processing, fiber sensing and information coding.

2.
Sci Rep ; 10(1): 7174, 2020 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-32346017

RESUMEN

We proposed and experimentally demonstrated a technique for the suppression of unwanted modes in double-clad fibers with a high core-to-clad diameter ratio by introducing high-index absorbing inclusions into the first cladding of the fibers. These inclusions disturb the shape of undesirable modes, and a noticeable part of the power becomes localized inside the inclusion, resulting in an increase in the propagation loss of these modes. Two fiber designs were studied and realized: one with cylindrical symmetry and an absorbing high-index ring as the inclusion and another with high-index absorbing rods inserted around the fiber core. In both cases, the possibility of achieving perfect single-mode propagation was demonstrated both theoretically and experimentally.

3.
Sci Rep ; 10(1): 11347, 2020 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-32647245

RESUMEN

During last decades there has been considerable interest in developing a fiber amplifier for the 1.3-[Formula: see text]m spectral region that is comparable in performance to the Er-doped fiber amplifier operating near 1.55 [Formula: see text]m. It is due to the fact that most of the existing fiber-optic communication systems that dominate terrestrial networks could be used for the data transmission in O-band (1260-1360 nm), where dispersion compensation is not required, providing a low-cost increase of the capacity. In this regard, significant efforts of the research laboratories were initially directed towards the study of the praseodymium-doped fluoride fiber amplifier having high gain and output powers at the desired wavelengths. However, despite the fact that this type of amplifiers had rapidly appeared as a commercial amplifier prototype it did not receive widespread demand in the telecom industry because of its low efficiency. It stimulated the search of novel optical materials for this purpose. About 10 years ago, a new type of bismuth-doped active fibers was developed, which turned out to be a promising medium for amplification at 1.3 [Formula: see text]m. Here, we report on the development of a compact and efficient 20-dB (achieved for signal powers between [Formula: see text] and [Formula: see text] dBm) bismuth-doped fiber amplifier for a wavelength region of 1300-1350 nm in the forward, backward and bi-directional configurations, which can be pumped by a commercially available laser diode at 1230 nm with an output power of 250 mW. The compactness of the tested amplifier was provided by using a depressed cladding active fiber with low bending loss, which was coiled on a reel with a radius of 1.5 cm. We studied the gain and noise figure characteristics at different pump and signal powers. A record gain coefficient of 0.18 dB/mW (at the pump-to-signal power conversion efficiency of above 27[Formula: see text]) has been achieved.

4.
Opt Lett ; 34(21): 3355-7, 2009 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-19881592

RESUMEN

Heavily Er-doped fibers (EDFs) based on P(2)O(5)-Al(2)O(3)-SiO(2) (PAS) ternary glass have been studied. A unique feature of this glass is the formation of a AlPO(4) join having a structure similar to that of SiO(2) glass and a refractive index below it. It is found that the Er(3+) absorption and emission spectra in the PAS EDFs are defined by the dopant (Al(2)O(3) or P(2)O(5)) present in excess and are close to those of the corresponding binary glass (Al(2)O(3)-SiO(2) or P(2)O(5)-SiO(2)). The presence of the AlPO(4) join results in the enhancement of the pump-to-signal conversion efficiency in the PAS EDFs as compared with the EDFs based on the P(2)O(5)-SiO(2) and Al(2)O(3)-SiO(2) (with 1.5 mol. %Al(2)O(3) and less) binary glasses. The PAS host glass is advantageous in the case of large-mode-area active fibers.

5.
Opt Lett ; 34(16): 2483-5, 2009 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-19684823

RESUMEN

The generation of 236 mW of second-harmonic power in a 32-cm-long periodically poled silica fiber, corresponding to an average conversion efficiency of 15.2+/-0.5%, is reported. This represents the highest normalized second-harmonic conversion and the highest average second-harmonic power ever reported for a periodically poled silica fiber, to our knowledge. The enhancement is attributed to an improved design of the specialty twin-hole fiber and the extension of the nonlinear interaction length.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA