Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Arterioscler Thromb Vasc Biol ; 43(6): 927-942, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37078291

RESUMEN

BACKGROUND: Endothelial cell activation is tightly controlled by the balance between VEGF (vascular endothelial cell growth factor) and Notch signaling pathway. VEGF destabilizes blood vessels and promotes neovascularization, which are common features of sight-threatening ocular vascular disorders. Here, we show that BCL6B (B-cell CLL/lymphoma 6 member B protein), also known as BAZF, ZBTB28, and ZNF62, plays a pivotal role in the development of retinal edema and neovascularization. METHODS: The pathophysiological physiological role of BCL6B was investigated in cellular and animal models mimicking 2 pathological conditions: retinal vein occlusion and choroidal neovascularization. An in vitro experimental system was used in which human retinal microvascular endothelial cells were supplemented with VEGF. Choroidal neovascularization cynomolgus monkey model was generated to investigate the involvement of BCL6B in the pathogenesis. Mice lacking BCL6B or treated with BCL6B-targeting small-interfering ribose nucleic acid were examined for histological and molecular phenotypes. RESULTS: In retinal endothelial cells, the BCL6B expression level was increased by VEGF. BCL6B-deficient endothelial cells showed Notch signal activation and attenuated cord formation via blockage of the VEGF-VEGFR2 signaling pathway. Optical coherence tomography images showed that choroidal neovascularization lesions were decreased by BCL6B-targeting small-interfering ribose nucleic acid. Although BCL6B mRNA expression was significantly increased in the retina, BCL6B-targeting small-interfering ribose nucleic acid suppressed ocular edema in the neuroretina. The increase in proangiogenic cytokines and breakdown of the inner blood-retinal barrier were abrogated in BCL6B knockout (KO) mice via Notch transcriptional activation by CBF1 (C promotor-binding factor 1) and its activator, the NICD (notch intracellular domain). Immunostaining showed that Müller cell activation, a source of VEGF, was diminished in BCL6B-KO retinas. CONCLUSIONS: These data indicate that BCL6B may be a novel therapeutic target for ocular vascular diseases characterized by ocular neovascularization and edema.


Asunto(s)
Neovascularización Coroidal , Ácidos Nucleicos , Neovascularización Retiniana , Enfermedades Vasculares , Animales , Humanos , Ratones , Neovascularización Coroidal/genética , Neovascularización Coroidal/metabolismo , Células Endoteliales/metabolismo , Macaca fascicularis/metabolismo , Ácidos Nucleicos/metabolismo , Ácidos Nucleicos/uso terapéutico , Neovascularización Retiniana/genética , Neovascularización Retiniana/metabolismo , Ribosa/metabolismo , Ribosa/uso terapéutico , Enfermedades Vasculares/patología , Factor A de Crecimiento Endotelial Vascular/metabolismo
2.
Mol Vis ; 29: 188-196, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38222457

RESUMEN

Purpose: To investigate the therapeutic effects of eye drops, namely, timolol maleate, a ß-adrenergic receptor antagonist, and latanoprost, a prostaglandin F2α analog, on retinal edema in a murine retinal vein occlusion (RVO) model. Methods: An RVO model was established using laser-induced RVO in mice, which were administered timolol maleate and latanoprost eye drops several times after venous occlusion. Subsequently, the thickness of the inner nuclear layer (INL) and the expression levels of such genes as Vegf and Atf4, which are stress markers of the endoplasmic reticulum, were examined. Primary human cultured retinal microvascular endothelial cells (HRMECs) were treated with timolol under hypoxic conditions, after which the gene expression pattern was investigated. Importantly, an integrated stress response inhibitor (ISRIB) was used in the RVO model, he known ISRIB, which suppresses the expression of ATF4 in retinal edema. Results: Increased INL thickness was suppressed by timolol eye drops, as were the expressions of Vegf and Atf4, in the RVO model. However, latanoprost eye drops did not induce any change in INL thickness. In HRMECs, hypoxic stress and serum deprivation increased the Vegf and Atf4 expressions; in response, treatment with timolol suppressed the Vegf expression. Furthermore, the ISRIB decreased the Vegf expression pattern and edema formation, which are associated with RVO. Conclusions: These results indicate that timolol eye drops may be a potential option for RVO treatment.


Asunto(s)
Papiledema , Oclusión de la Vena Retiniana , Masculino , Humanos , Ratones , Animales , Timolol/farmacología , Timolol/uso terapéutico , Timolol/metabolismo , Oclusión de la Vena Retiniana/complicaciones , Oclusión de la Vena Retiniana/tratamiento farmacológico , Oclusión de la Vena Retiniana/metabolismo , Soluciones Oftálmicas/uso terapéutico , Latanoprost/farmacología , Latanoprost/metabolismo , Latanoprost/uso terapéutico , Papiledema/tratamiento farmacológico , Células Endoteliales/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Edema/complicaciones
3.
FASEB J ; 36(6): e22323, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35485981

RESUMEN

Neovascular glaucoma (NVG) is caused by the formation of new blood vessels in the angle, iris, and cornea in retinal ischemic disease, such as proliferative diabetic retinopathy (PDR) and retinal vein occlusion (RVO), which can reduce the visual acuity. However, the pathophysiological symptoms of NVG are still not well understood because there is no model for the formation of NVG in the angle, iris, and cornea. The aim of this study was to investigate the involvement of NVG during ischemic disease, in a murine model of retinal ischemia. We evaluated the changes of the intraocular pressure (IOP) and pathological symptoms in the anterior eye segment and retina in this model, and the changes in the RNA or protein expression of vascular endothelial growth factor (VEGF) and fibrosis-related factors were analyzed in the retina and cornea by quantitative real-time polymerase chain reaction or western blot, respectively. Furthermore, we examined the changes in IOP after intravitreal injection of an anti-VEGF antibody. First, NVG formed in the retinal ischemic murine model, and the IOP was elevated in mice with NVG formation. Interestingly, VEGF expression was decreased in the retina but increased in the cornea in the murine model of NVG. On the other hand, fibrosis-related factors were increased in the retina and also significantly increased in the cornea in NVG. Moreover, the administration of anti-VEGF antibody immediately after vessel occlusion suppressed the increase in IOP, but administration at 7 days after vessel occlusion accelerated the increase in IOP. These findings suggest that the formation of NVG may be correlated with the pathological symptoms of retinal ischemic disease, via changes in VEGF and fibrosis-related factor expression.


Asunto(s)
Glaucoma Neovascular , Enfermedades de la Retina , Animales , Segmento Anterior del Ojo/irrigación sanguínea , Modelos Animales de Enfermedad , Fibrosis , Glaucoma Neovascular/diagnóstico , Glaucoma Neovascular/etiología , Ratones , Retina , Factor A de Crecimiento Endotelial Vascular/genética
4.
Int J Mol Sci ; 22(16)2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-34445595

RESUMEN

Neovascular age-related macular degeneration (nAMD) featuring choroidal neovascularization (CNV) is the principal cause of irreversible blindness in elderly people in the world. Integrated stress response (ISR) is one of the intracellular signals to be adapted to various stress conditions including endoplasmic reticulum (ER) stress. ISR signaling results in the upregulation of activating transcription factor 4 (ATF4), which is a mediator of ISR. Although recent studies have suggested ISR contributes to the progression of some age-related disorders, the effects of ATF4 on the development of CNV remain unclear. Here, we performed a murine model of laser-induced CNV and found that ATF4 was highly expressed in endothelial cells of the blood vessels of the CNV lesion site. Exposure to integrated stress inhibitor (ISRIB) reduced CNV formation, vascular leakage, and the upregulation of vascular endothelial growth factor (VEGF) in retinal pigment epithelium (RPE)-choroid-sclera complex. In human retinal microvascular endothelial cells (HRMECs), ISRIB reduced the level of ATF4 and VEGF induced by an ER stress inducer, thapsigargin, and recombinant human VEGF. Moreover, ISRIB decreased the VEGF-induced cell proliferation and migration of HRMECs. Collectively, our findings showed that pro-angiogenic effects of ATF4 in endothelial cells may be a potentially therapeutic target for patients with nAMD.


Asunto(s)
Factor de Transcripción Activador 4/metabolismo , Neovascularización Coroidal/patología , Modelos Animales de Enfermedad , Células Endoteliales/patología , Epitelio Pigmentado de la Retina/patología , Factores de Crecimiento Endotelial Vascular/metabolismo , Factor de Transcripción Activador 4/genética , Animales , Neovascularización Coroidal/etiología , Neovascularización Coroidal/metabolismo , Células Endoteliales/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Epitelio Pigmentado de la Retina/metabolismo , Transducción de Señal , Factores de Crecimiento Endotelial Vascular/genética
5.
Invest Ophthalmol Vis Sci ; 65(8): 16, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38980271

RESUMEN

Purpose: The cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS) stimulator of interferon gene (STING) pathway is a crucial cascade in the inflammatory response initiated by the recognition of cytosolic double-stranded DNA (dsDNA). The aim of this study was to evaluate the effect of STING inhibitor in murine choroidal neovascularization (CNV). Methods: To investigate whether the cGAS-STING pathway is activated during CNV, CNV was induced using laser photocoagulation in male C57BL/6J mice. The expression of change of cGAS and STING during CNV development was confirmed by Western-blotting. H-151, a potent STING palmitoylation antagonist, was used as a STING inhibitor. H-151 was administered intravitreally immediately after laser induction. To confirm the role of the cGAS-STING pathway in CNV formation, we evaluated CNV size and performed fundus fluorescein angiography. Results: The expression levels of cGAS and STING were significantly upregulated in the RPE-choroid complex after CNV induction, and dsDNA merged with cGAS was observed in CNV lesions. Intravitreal administration of H-151 suppressed CNV development and fluorescent leakage from neovessels. In CNV lesions, the high expression of STING and cGAS was observed in infiltrating F4/80+ macrophages. H-151 administration attenuated downstream signals of the cGAS-STING pathway, including the phosphorylation of nuclear factor-κB, and downregulated the expression of interleukin 1ß. Conclusions: These findings support that the inhibition of cGAS-STING pathway treats abnormal ocular angiogenesis.


Asunto(s)
Neovascularización Coroidal , Proteínas de la Membrana , Nucleotidiltransferasas , Animales , Masculino , Ratones , Western Blotting , Coroides/metabolismo , Coroides/patología , Neovascularización Coroidal/tratamiento farmacológico , Neovascularización Coroidal/metabolismo , Modelos Animales de Enfermedad , Angiografía con Fluoresceína , Inyecciones Intravítreas , Degeneración Macular/tratamiento farmacológico , Degeneración Macular/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/antagonistas & inhibidores , Ratones Endogámicos C57BL , Nucleotidiltransferasas/metabolismo , Nucleotidiltransferasas/antagonistas & inhibidores
6.
Sci Rep ; 14(1): 9700, 2024 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-38678148

RESUMEN

Ocular abnormal angiogenesis and edema are featured in several ocular diseases. S1P signaling via S1P1 likely is part of the negative feedback mechanism necessary to maintain vascular health. In this study, we conducted pharmacological experiments to determine whether ASP4058, a sphingosine 1-phosphate receptor 1/5 (S1P1/5) agonist, is useful in abnormal vascular pathology in the eye. First, human retinal microvascular endothelial cells (HRMECs) were examined using vascular endothelial growth factor (VEGF)-induced cell proliferation and hyperpermeability. ASP4058 showed high affinity and inhibited VEGF-induced proliferation and hyperpermeability of HRMECs. Furthermore, S1P1 expression and localization changes were examined in the murine laser-induced choroidal neovascularization (CNV) model, a mouse model of exudative age-related macular degeneration, and the efficacy of ASP4058 was verified. In the CNV model mice, S1P1 tended to decrease in expression immediately after laser irradiation and colocalized with endothelial cells and Müller glial cells. Oral administration of ASP4058 also suppressed vascular hyperpermeability and CNV, and the effect was comparable to that of the intravitreal administration of aflibercept, an anti-VEGF drug. Next, efficacy was also examined in a retinal vein occlusion (RVO) model in which retinal vascular permeability was increased. ASP4058 dose-dependently suppressed the intraretinal edema. In addition, it suppressed the expansion of the perfusion area observed in the RVO model. ASP4058 also suppressed the production of VEGF in the eye. Collectively, ASP4058 can be a potential therapeutic agent that normalizes abnormal vascular pathology, such as age-related macular degeneration and RVO, through its direct action on endothelial cells.


Asunto(s)
Neovascularización Coroidal , Modelos Animales de Enfermedad , Animales , Humanos , Neovascularización Coroidal/tratamiento farmacológico , Neovascularización Coroidal/metabolismo , Neovascularización Coroidal/patología , Ratones , Receptores de Esfingosina-1-Fosfato/metabolismo , Receptores de Esfingosina-1-Fosfato/agonistas , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Proliferación Celular/efectos de los fármacos , Ratones Endogámicos C57BL , Receptores de Lisoesfingolípidos/agonistas , Receptores de Lisoesfingolípidos/metabolismo , Masculino
7.
Eur J Pharmacol ; 976: 176691, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38821166

RESUMEN

(233/250) Retinal vein occlusion (RVO) causes macular edema and retinal ischemia resulting in visual field and vision loss. A bispecific antibody that blocks VEGF-A and angiopoietin-2 (Ang-2) has been recently launched and applied clinically to treat macular edema, but the role of Ang-2 in the pathogenesis of RVO is still unclear. In this study, we investigated the effects of the anti-VEGF-A/anti-Ang-2 bispecific antibody (BsAb) in a murine RVO model. By using RVO model mice, the expression of Ang-2 gene and protein was examined in the retina through real-time qPCR and Western blotting, respectively. A significant increase in Ang-2 was detected 1 day after occlusion. Immediately after occlusion, control IgG 400 µg/mL, anti-VEGF-A antibody 200 µg/mL, anti-Ang-2 antibody 200 µg/mL, and BsAb 400 µg/mL were intravitreally administered at 2 µL. Visual function was examined using electroretinograms, and apoptosis was examined using TUNEL staining. Interestingly, BsAb partially suppressed the decrease in amplitude of a and b waves compared to control IgG. Anti-Ang-2 antibody and BsAb reduced apoptosis-positive cells 1 day after occlusion. Comprehensive gene expression profiles were also examined using RNA sequencing analysis. RNA sequencing analysis of the retinal tissues showed that BsAb suppressed expression of gene groups associated with inflammatory response and vascular development compared to anti-VEGF-A antibody. Taken together, higher expression of Ang-2 contributes to the pathophysiology of RVO, providing a possible mechanism for the efficacy of BsAb in suppressing retinal dysfunction in RVO.


Asunto(s)
Angiopoyetina 2 , Anticuerpos Biespecíficos , Modelos Animales de Enfermedad , Retina , Oclusión de la Vena Retiniana , Factor A de Crecimiento Endotelial Vascular , Animales , Oclusión de la Vena Retiniana/tratamiento farmacológico , Angiopoyetina 2/antagonistas & inhibidores , Angiopoyetina 2/metabolismo , Angiopoyetina 2/inmunología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Ratones , Anticuerpos Biespecíficos/farmacología , Anticuerpos Biespecíficos/uso terapéutico , Retina/efectos de los fármacos , Retina/metabolismo , Retina/patología , Apoptosis/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Inyecciones Intravítreas , Electrorretinografía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA