Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Org Chem ; 88(17): 12394-12408, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37590101

RESUMEN

Three novel analogues of C22-fluoro-25-hydroxyvitamin D3 (5-7) were synthesized and evaluated to investigate the effects of side-chain fluorination on biological activity and metabolism of vitamin D. These novel analogues were constructed by convergent synthesis applying the Wittig-Horner coupling reaction between CD-ring ketones (41,42,44) and A-ring phosphine oxide (11). The introduction of C22-fluoro units was achieved by stereoselective deoxy-fluorination for synthesizing 5 and 6 or two-step cationic fluorination for 7. The absolute configuration of the C22-fluoro-8-oxo-CD-ring (39) was confirmed by X-ray crystallographic structure determination. The basic biological activity of the side-chain fluorinated analogues, including compounds (5-7), was evaluated. Generally, osteocalcin promoter transactivation activity decreased in the order of C24-fluoro, C23-fluoro, and C22-fluoro analogues. In addition, the metabolic stability of C22-fluoro-25-hydroxyvitamin D3 (5-7) against hCYP24A1 metabolism was also evaluated. 22,22-Difluoro-25(OH)D3 (7) was more stable against hCYP24A1 metabolism compared with its non-fluorinated counterpart 25-hydroxyvitamin D3 (1), but fluorination at the C22 position had little effect on the metabolic stability compared with C24- and C23-fluoro analogues. Our research clarified that side-chain fluorination in vitamin D markedly changes CYP24A1 metabolic stability depending on the fluorinating position.

2.
Chem Pharm Bull (Tokyo) ; 71(9): 717-723, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37423740

RESUMEN

As an extension of our research on providing a chemical library of side-chain fluorinated vitamin D3 analogues, we newly designed and synthesized 26,27-difluoro-25-hydroxyvitamin D3 (1) and 26,26,27,27-tetrafluoro-25-hydroxyvitamin D3 (2) using a convergent method applying the Wittig-Horner coupling reaction between CD-ring ketones (13, 14) and A-ring phosphine oxide (5). The basic biological activities of analogues, 1, 2, and 26,26,26,27,27,27-hexafluoro-25-hydroxyvitamin D3 [HF-25(OH)D3] were examined. Although the tetrafluorinated new compound 2 exhibited higher binding affinity for vitamin D receptor (VDR) and resistance to CYP24A1-dependent metabolism compared with the difluorinated 1 and its non-fluorinated counterpart 25-hydroxyvitamin D3 [25(OH)D3], HF-25(OH)D3 showed the highest activity among these compounds. Osteocalcin promoter transactivation activity of these fluorinated analogues was tested, and it decreased in the order of HF-25(OH)D3, 2, 1, and 25(OH)D3 in which HF-25(OH)D3 showed 19-times greater activity than the natural 25(OH)D3.


Asunto(s)
Calcifediol , Calcitriol , Calcitriol/farmacología , Calcitriol/metabolismo , Flúor , Semivida , Receptores de Calcitriol/metabolismo , Vitamina D3 24-Hidroxilasa/metabolismo
3.
J Biol Chem ; 296: 100668, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33865853

RESUMEN

CYP24A1-deficient (Cyp24a1 KO) rats were generated using the CRISPER/Cas9 system to investigate CYP24A1-dependent or -independent metabolism of 25(OH)D3, the prohormone of calcitriol. Plasma 25(OH)D3 concentrations in Cyp24a1 KO rats were approximately twofold higher than in wild-type rats. Wild-type rats showed five metabolites of 25(OH)D3 in plasma following oral administration of 25(OH)D3, and these metabolites were not detected in Cyp24a1 KO rats. Among these metabolites, 25(OH)D3-26,23-lactone was identified as the second major metabolite with a significantly higher Tmax value than others. When 23S,25(OH)2D3 was administered to Cyp24a1 KO rats, neither 23,25,26(OH)3D3 nor 25(OH)D3-26,23-lactone was observed. However, when 23S,25R,26(OH)3D3 was administered to Cyp24a1 KO rats, plasma 25(OH)D3-26,23-lactone was detected. These results suggested that CYP24A1 is responsible for the conversion of 25(OH)D3 to 23,25,26(OH)3D3 via 23,25(OH)2D3, but enzyme(s) other than CYP24A1 may be involved in the conversion of 23,25,26(OH)3D3 to 25(OH)D3-26,23-lactone. Enzymatic studies using recombinant human CYP species and the inhibitory effects of ketoconazole suggested that CYP3A plays an essential role in the conversion of 23,25,26(OH)3D3 into 25(OH)D3-26,23-lactone in both rats and humans. Taken together, our data indicate that Cyp24a1 KO rats are valuable for metabolic studies of vitamin D and its analogs. In addition, long-term administration of 25(OH)D3 to Cyp24a1 KO rats at 110 µg/kg body weight/day resulted in significant weight loss and ectopic calcification. Thus, Cyp24a1 KO rats could represent an important model for studying renal diseases originating from CYP24A1 dysfunction.


Asunto(s)
Sistemas CRISPR-Cas , Calcifediol/metabolismo , Citocromo P-450 CYP3A/metabolismo , Metaboloma/efectos de los fármacos , Vitamina D3 24-Hidroxilasa/antagonistas & inhibidores , Vitaminas/metabolismo , Animales , Animales Modificados Genéticamente , Calcifediol/administración & dosificación , Ratas , Vitamina D3 24-Hidroxilasa/genética , Vitamina D3 24-Hidroxilasa/metabolismo , Vitaminas/administración & dosificación
4.
Biosci Biotechnol Biochem ; 86(4): 444-454, 2022 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-35134837

RESUMEN

CYP105A1 from Streptomyces griseolus converts vitamin D3 to its biologically active form, 1α,25-dihydroxy vitamin D3. R73A/R84A mutation enhanced the 1α- and 25-hydroxylation activity for vitamin D3, while M239A mutation generated the 1α-hydroxylation activity for vitamin D2. In this study, the stability of six CYP105A1 enzymes, including 5 variants (R73A/R84A, M239A, R73A/R84A/M239A (=TriA), TriA/E90A, and TriA/E90D), was examined. Circular dichroism analysis revealed that M239A markedly reduces the enzyme stability. Protein fluorescence analysis disclosed that these mutations, especially M239A, induce large changes in the local conformation around Trp residues. Strong stabilizing effect of glycerol was observed. Nondenaturing PAGE analysis showed that CYP105A1 enzymes are prone to self-association. Fluorescence analysis using a hydrophobic probe 8-anilino-1-naphthalenesulfonic acid suggested that M239A mutation enhances self-association and that E90A and E90D mutations, in cooperation with M239A, accelerate self-association with little effect on the stability.


Asunto(s)
Proteínas Bacterianas , Sistema Enzimático del Citocromo P-450 , Proteínas Bacterianas/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Hidroxilación , Vitamina D , Vitaminas
5.
Int J Mol Sci ; 23(14)2022 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-35887195

RESUMEN

The microsomal cytochrome P450 3A4 (CYP3A4) and mitochondrial cytochrome P450 24A1 (CYP24A1) hydroxylating enzymes both metabolize vitamin D and its analogs. The three-dimensional (3D) structure of the full-length native human CYP3A4 has been solved, but the respective structure of the main vitamin D hydroxylating CYP24A1 enzyme is unknown. The structures of recombinant CYP24A1 enzymes have been solved; however, from studies of the vitamin D receptor, the use of a truncated protein for docking studies of ligands led to incorrect results. As the structure of the native CYP3A4 protein is known, we performed rigid docking supported by molecular dynamic simulation using CYP3A4 to predict the metabolic conversion of analogs of 1,25-dihydroxyvitamin D2 (1,25D2). This is highly important to the design of novel vitamin D-based drug candidates of reasonable metabolic stability as CYP3A4 metabolizes ca. 50% of the drug substances. The use of the 3D structure data of human CYP3A4 has allowed us to explain the substantial differences in the metabolic conversion of the side-chain geometric analogs of 1,25D2. The calculated free enthalpy of the binding of an analog of 1,25D2 to CYP3A4 agreed with the experimentally observed conversion of the analog by CYP24A1. The metabolic conversion of an analog of 1,25D2 to the main vitamin D hydroxylating enzyme CYP24A1, of unknown 3D structure, can be explained by the binding strength of the analog to the known 3D structure of the CYP3A4 enzyme.


Asunto(s)
Esteroide Hidroxilasas , Vitamina D , Citocromo P-450 CYP3A , Sistema Enzimático del Citocromo P-450/metabolismo , Humanos , Esteroide Hidroxilasas/metabolismo , Vitamina D/metabolismo , Vitamina D3 24-Hidroxilasa/metabolismo
6.
Molecules ; 27(16)2022 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-36014588

RESUMEN

In this paper, we report an efficient synthetic route for the 23,23-difluoro-25-hydroxyvitamin D3 (5) and its 24-hydroxylated analogues (7,8), which are candidates for the CYP24A1 main metabolites of 5. The key fragments, 23,23-difluoro-CD-ring precursors (9-11), were synthesized starting from Inhoffen-Lythgoe diol (12), and introduction of the C23 difluoro unit to α-ketoester (19) was achieved using N,N-diethylaminosulfur trifluoride (DAST). Preliminary biological evaluation revealed that 23,23-F2-25(OH)D3 (5) showed approximately eight times higher resistance to CYP24A1 metabolism and 12 times lower VDR-binding affinity than its nonfluorinated counterpart 25(OH)D3 (1).


Asunto(s)
Calcifediol , Calcitriol , Calcifediol/metabolismo , Calcitriol/farmacología , Receptores de Calcitriol/metabolismo , Vitamina D/análogos & derivados , Vitamina D3 24-Hidroxilasa/metabolismo
7.
Chembiochem ; 22(19): 2896-2900, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34250710

RESUMEN

1α,25-Dihydroxyvitamin D3 (abbreviated here as 1,25D3 ) is a hormonally active form of vitamin D3 (D3 ), and is produced from D3 by CYP27 A1-mediated hydroxylation at C25, followed by CYP27B1-mediated hydroxylation at C1. Further hydroxylation of 25D3 and 1,25D3 occurs at C23, C24 and C26 to generate corresponding metabolites, except for 1,25R,26D3 . Since the capability of CYP27B1 to hydroxylate C1 of side-chain-hydroxylated metabolites other than 23S,25D3 and 24R,25D3 has not been examined, we have here explored the role of CYP27B1 in the C1 hydroxylation of a series of side-chain-hydroxylated D3 derivatives. We found that CYP27B1 hydroxylates the R diastereomers of 24,25D3 and 25,26D3 more effectively than the S diastereomers, but shows almost no activity towards either diastereomer of 23,25D3 . This is the first report to show that CYP27B1 metabolizes 25,26D3 to the corresponding 1α-hydroxylated derivative, 1,25,26D3 . It will be interesting to examine the physiological relevance of this finding.


Asunto(s)
25-Hidroxivitamina D3 1-alfa-Hidroxilasa/metabolismo , Colecalciferol/biosíntesis , Colecalciferol/análogos & derivados , Colecalciferol/metabolismo , Humanos , Hidroxilación , Conformación Molecular
8.
Mol Ther ; 28(1): 100-118, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31607541

RESUMEN

Shiga toxin-producing Escherichia coli (STEC) causes hemorrhagic colitis, hemolytic uremic syndrome, and acute encephalopathies that may lead to sudden death or severe neurologic sequelae. Current treatments, including immunoglobulin G (IgG) immunoadsorption, plasma exchange, steroid pulse therapy, and the monoclonal antibody eculizumab, have limited effects against the severe neurologic sequelae. Multilineage-differentiating stress-enduring (Muse) cells are endogenous reparative non-tumorigenic stem cells that naturally reside in the body and are currently under clinical trials for regenerative medicine. When administered intravenously, Musecells accumulate to the damaged tissue, where they exert anti-inflammatory, anti-apoptotic, anti-fibrotic, and immunomodulatory effects, and replace damaged cells by differentiating into tissue-constituent cells. Here, severely immunocompromised non-obese diabetic/severe combined immunodeficiency (NOD-SCID) mice orally inoculated with 9 × 109 colony-forming units of STEC O111 and treated 48 h later with intravenous injection of 5 × 104 Muse cells exhibited 100% survival and no severe after-effects of infection. Suppression of granulocyte-colony-stimulating factor (G-CSF) by RNAi abolished the beneficial effects of Muse cells, leading to a 40% death and significant body weight loss, suggesting the involvement of G-CSF in the beneficial effects of Muse cells in STEC-infected mice. Thus, intravenous administration of Muse cells could be a candidate therapeutic approach for preventing fatal encephalopathy after STEC infection.


Asunto(s)
Encefalopatías/microbiología , Encefalopatías/terapia , Trasplante de Células/métodos , Infecciones por Escherichia coli/terapia , Trasplante de Células Madre Mesenquimatosas/métodos , Toxina Shiga II/metabolismo , Escherichia coli Shiga-Toxigénica/metabolismo , Adulto , Anciano de 80 o más Años , Animales , Encéfalo/patología , Encefalopatías/epidemiología , Encefalopatías/metabolismo , Modelos Animales de Enfermedad , Brotes de Enfermedades , Infecciones por Escherichia coli/epidemiología , Infecciones por Escherichia coli/microbiología , Femenino , Humanos , Inyecciones Intravenosas , Japón/epidemiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Ratones Endogámicos NOD , Ratones SCID , Resultado del Tratamiento
9.
Int J Mol Sci ; 22(21)2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34769295

RESUMEN

Two 24-fluoro-25-hydroxyvitamin D3 analogues (3,4) were synthesized in a convergent manner. The introduction of a stereocenter to the vitamin D3 side-chain C24 position was achieved via Sharpless dihydroxylation, and a deoxyfluorination reaction was utilized for the fluorination step. Comparison between (24R)- and (24S)-24-fluoro-25-hydroxyvitamin D3 revealed that the C24-R-configuration isomer 4 was more resistant to CYP24A1-dependent metabolism than its 24S-isomer 3. The new synthetic route of the CYP24A1 main metabolite (24R)-24,25-dihydroxyvitamin D3 (6) and its 24S-isomer (5) was also studied using synthetic intermediates (30,31) in parallel.


Asunto(s)
Calcifediol/análogos & derivados , Fluoruros/síntesis química , Vitamina D3 24-Hidroxilasa/metabolismo , Estabilidad de Medicamentos , Fluoruros/química , Humanos , Estructura Molecular , Estereoisomerismo
10.
Int J Mol Sci ; 22(21)2021 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-34769269

RESUMEN

We have developed an in vitro system to easily examine the affinity for vitamin D receptor (VDR) and CYP24A1-mediated metabolism as two methods of assessing vitamin D derivatives. Vitamin D derivatives with high VDR affinity and resistance to CYP24A1-mediated metabolism could be good therapeutic agents. This system can effectively select vitamin D derivatives with these useful properties. We have also developed an in vivo system including a Cyp27b1-gene-deficient rat (a type I rickets model), a Vdr-gene-deficient rat (a type II rickets model), and a rat with a mutant Vdr (R270L) (another type II rickets model) using a genome editing method. For Cyp27b1-gene-deficient and Vdr mutant (R270L) rats, amelioration of rickets symptoms can be used as an index of the efficacy of vitamin D derivatives. Vdr-gene-deficient rats can be used to assess the activities of vitamin D derivatives specialized for actions not mediated by VDR. One of our original vitamin D derivatives, which displays high affinity VDR binding and resistance to CYP24A1-dependent metabolism, has shown good therapeutic effects in Vdr (R270L) rats, although further analysis is needed.


Asunto(s)
Descubrimiento de Drogas , Vitamina D , Animales , Evaluación Preclínica de Medicamentos , Humanos , Ratas , Raquitismo/tratamiento farmacológico , Raquitismo/genética , Raquitismo/metabolismo , Vitamina D/análogos & derivados , Vitamina D/farmacocinética , Vitamina D/uso terapéutico
11.
Int J Mol Sci ; 21(2)2020 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-31963716

RESUMEN

Experimental data indicate that low-calcemic vitamin D derivatives (VDDs) exhibit anticancer properties, both in vitro and in vivo. In our search for a vitamin D analog as potential anticancer agent, we investigated the influence of chirality in the side chain of the derivatives of 1,25-dihydroxyergocalciferol (1,25D2) on their activities. In this study, we synthesized modified analogs at the side chain and the A-ring, which differed from one another in their absolute configuration at C-24, namely (24S)- and (24R)-1,25-dihydroxy-19-nor-20a-homo-ergocalciferols (PRI-5105 and PRI-5106, respectively), and evaluated their activity. Unexpectedly, despite introducing double-point modifications, both analogs served as very good substrates for the vitamin D-hydroxylating enzyme. Irrespective of their absolute C-24 configuration, PRI-5105 and PRI-5106 showed relatively low resistance to CYP24A1-dependent metabolic deactivation. Additionally, both VDDs revealed a similar antiproliferative activity against HT-29 colorectal cancer cells which was higher than that of 1,25D3, the major biologically active metabolite of vitamin D. Furthermore, PRI-5105 and PRI-5106 significantly enhanced the cell growth-inhibitory activity of 5-fluorouracil on HT-29 cell line. In conclusion, although the two derivatives showed a relatively high anticancer potential, they exhibited undesired high metabolic conversion.


Asunto(s)
Antineoplásicos/síntesis química , Neoplasias Colorrectales/metabolismo , Ergocalciferoles/síntesis química , Vitamina D3 24-Hidroxilasa/metabolismo , Vitamina D/análogos & derivados , Antineoplásicos/química , Antineoplásicos/farmacología , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Neoplasias Colorrectales/tratamiento farmacológico , Sinergismo Farmacológico , Transición Epitelial-Mesenquimal/efectos de los fármacos , Ergocalciferoles/química , Ergocalciferoles/farmacología , Fluorouracilo/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HCT116 , Células HT29 , Humanos , Estructura Molecular , Transducción de Señal/efectos de los fármacos , Vitamina D/química
12.
J Cell Physiol ; 233(10): 6565-6577, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29150940

RESUMEN

We previously revealed that epithelial-to-mesenchymal transition (EMT) was mediated by ΔNp63ß, a splicing variant of ΔNp63, in oral squamous cell carcinoma (OSCC). Recent studies have highlighted the involvement of microRNA (miRNA) in EMT of cancer cells, though the mechanism remains unclear. To identify miRNAs responsible for ΔNp63ß-mediated EMT, miRNA microarray analyses were performed by ΔNp63ß-overexpression in OSCC cells; SQUU-B, which lacks ΔNp63 expression and displays EMT phenotypes. miRNAs microarray analyses revealed miR-205 was the most up-regulated following ΔNp63ß-overexpression. In OSCC cells, miR-205 expression was positively associated with ΔNp63 and negatively with zinc-finger E-box binding homeobox (ZEB) 1 and ZEB2, potential targets of miR-205. miR-205 overexpression by miR-205 mimic transfection into SQUU-B cells led to decreasing ZEB1, ZEB2, and mesenchymal markers, increasing epithelial markers, and reducing cell motilities, suggesting inhibition of EMT phenotype. Interestingly, the results opposite to this phenomenon were obtained by transfection of miR-205 inhibitor into OSCC cells, which express ΔNp63 and miR-205. Furthermore, target protector analyses revealed direct regulation by miR-205 of ZEB1 and ZEB2 expression. These results showed tumor-suppressive roles of ΔNp63ß and miR-205 by inhibiting EMT thorough modulating ZEB1 and ZEB2 expression in OSCC.


Asunto(s)
Carcinoma de Células Escamosas/genética , MicroARNs/genética , Neoplasias de la Boca/genética , Factores de Transcripción/genética , Proteínas Supresoras de Tumor/genética , Carcinoma de Células Escamosas/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias de la Boca/patología , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc/genética , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genética
13.
Biochim Biophys Acta Proteins Proteom ; 1866(1): 23-31, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28583351

RESUMEN

Cytochrome P450 enzymes belonging to the CYP105 family are predominantly found in bacteria belonging to the phylum Actinobacteria and the order Actinomycetales. In this review, we focused on the protein engineering of P450s belonging to the CYP105 family for industrial use. Two Arg substitutions to Ala of CYP105A1 enhanced its vitamin D3 25- and 1α-hydroxylation activities by 400 and 100-fold, respectively. The coupling efficiency between product formation and NADPH oxidation was largely improved by the R84A mutation. The quintuple mutant Q87W/T115A/H132L/R194W/G294D of CYP105AB3 showed a 20-fold higher activity than the wild-type enzyme. Amino acids at positions 87 and 191 were located at the substrate entrance channel, and that at position 294 was located close to the heme group. Semi-rational engineering of CYP105A3 selected the best performing mutant, T85F/T119S/V194N/N363Y, for producing pravastatin. The T119S and N363Y mutations synergistically had remarkable effects on the interaction between CYP105A3 and putidaredoxin. Although wild-type CYP105AS1 hydroxylated compactin to 6-epi-pravastatin, the quintuple mutant I95T/Q127R/A180V/L236I/A265N converted almost all compactin to pravastatin. Five amino acid substitutions by two rounds of mutagenesis almost completely changed the stereo-selectivity of CYP105AS1. These results strongly suggest that the protein engineering of CYP105 enzymes greatly increase their industrial utility. This article is part of a Special Issue entitled: Cytochrome P450 biodiversity and biotechnology, edited by Erika Plettner, Gianfranco Gilardi, Luet Wong, Vlada Urlacher, Jared Goldstone.


Asunto(s)
Actinobacteria/genética , Sustitución de Aminoácidos , Proteínas Bacterianas/química , Sistema Enzimático del Citocromo P-450/química , Mutación , Ingeniería de Proteínas/métodos , Actinobacteria/enzimología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Colecalciferol/metabolismo , Secuencia Conservada , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Ferredoxinas/metabolismo , Expresión Génica , Hidroxilación , Isoenzimas , Lovastatina/análogos & derivados , Lovastatina/metabolismo , Simulación del Acoplamiento Molecular , Pravastatina/biosíntesis , Streptomyces/enzimología , Streptomyces/genética , Especificidad por Sustrato
14.
Appl Microbiol Biotechnol ; 102(2): 723-732, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29134333

RESUMEN

Cytosolic sulfotransferases (SULTs), one of the predominant phase II drug metabolizing enzymes (DME), play important roles in metabolism of xeno- and endobiotics to generate their sulfo-conjugates. These sulfo-conjugates often have biological activities but are difficult to study, because even though only small amounts are required to evaluate their efficacy and safety, chemical or biological synthesis of sulfo-conjugatesis is often challenging. Previously, we constructed a DME expression system for cytochrome P450 and UGT, using yeast cells, and successfully produced xenobiotic metabolites in a whole-cell-dependent manner. In this study, we developed a yeast expression system for human SULTs, including SULT1A1, 1A3, 1B1, 1C4, 1E1, and 2A1, in Saccharomyces cerevisiae and examined its sulfo-conjugate productivity. The recombinant yeast cells expressing each of the SULTs successfully produced several hundred milligram per liter of xeno- or endobioticsulfo-conjugates within 6 h. This whole-cell-dependent biosynthesis enabled us to produce sulfo-conjugates without the use of 3'-phosphoadenosine-5'-phosphosulfate, an expensive cofactor. Additionally, the production of regiospecific sulfo-conjugates of several polyphenols was possible with this method, making this novel yeast expression system a powerful tool for uncovering the metabolic pathways and biological actions of sulfo-conjugates.


Asunto(s)
Saccharomycetales/metabolismo , Sulfatos/química , Sulfotransferasas/biosíntesis , Xenobióticos/metabolismo , Citosol/enzimología , Humanos , Inactivación Metabólica , Proteínas Recombinantes/biosíntesis , Saccharomycetales/genética , Sulfotransferasas/genética
15.
J Biol Chem ; 291(10): 4913-27, 2016 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-26728457

RESUMEN

Chronic kidney disease (CKD) is associated with an increase in serum retinol; however, the underlying mechanisms of this disorder are poorly characterized. Here, we found that the alteration of hepatic metabolism induced the accumulation of serum retinol in 5/6 nephrectomy (5/6Nx) mice. The liver is the major organ responsible for retinol metabolism; accordingly, microarray analysis revealed that the hepatic expression of most CYP genes was changed in 5/6Nx mice. In addition, D-box-binding protein (DBP), which controls the expression of several CYP genes, was significantly decreased in these mice. Cyp3a11 and Cyp26a1, encoding key proteins in retinol metabolism, showed the greatest decrease in expression in 5/6Nx mice, a process mediated by the decreased expression of DBP. Furthermore, an increase of plasma transforming growth factor-ß1 (TGF-ß1) in 5/6Nx mice led to the decreased expression of the Dbp gene. Consistent with these findings, the alterations of retinol metabolism and renal dysfunction in 5/6Nx mice were ameliorated by administration of an anti-TGF-ß1 antibody. We also show that the accumulation of serum retinol induced renal apoptosis in 5/6Nx mice fed a normal diet, whereas renal dysfunction was reduced in mice fed a retinol-free diet. These findings indicate that constitutive Dbp expression plays an important role in mediating hepatic dysfunction under CKD. Thus, the aggravation of renal dysfunction in patients with CKD might be prevented by a recovery of hepatic function, potentially through therapies targeting DBP and retinol.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Hígado/metabolismo , Insuficiencia Renal Crónica/metabolismo , Factores de Transcripción/metabolismo , Animales , Apoptosis , Células Cultivadas , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Proteínas de Unión al ADN/genética , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos ICR , Insuficiencia Renal Crónica/patología , Ácido Retinoico 4-Hidroxilasa , Factores de Transcripción/genética , Factor de Crecimiento Transformador beta1/metabolismo , Vitamina A/sangre
16.
Biochem Biophys Res Commun ; 486(2): 336-341, 2017 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-28302483

RESUMEN

Our previous studies revealed that CYP105A1 can convert vitamin D3 (VD3) to its active form, 1α,25-dihydroxyvitamin D3 (1,25D3). Site-directed mutagenesis of CYP105A1 based on its crystal structure dramatically enhanced its activity; the activity of double variants R73A/R84A and R73A/R84V was more than 100-fold higher than that of the wild type of CYP105A1. In contrast, these variants had a low ability to convert vitamin D2 (VD2) to 1α,25-dihydroxyvitamin D2 (1,25D2), whereas they catalyzed the sequential hydroxylation at positions C25 and C26 to produce 25,26D2. A comparison of the docking models of 25D2 and 25D3 into the substrate-binding pocket of R73A/R84A suggests that the side chain of the Met239 inhibits the binding of 25D2 for 1α-hydroxylation. Therefore, the Met239 residue of R73A/R84A was substituted for Ala. As expected, the triple variant R73A/R84A/M239A showed a 22-fold higher 1α-hydroxylation activity towards 25D2. To the best of our knowledge, this is the first report on the generation of microbial cytochrome P450 that converts VD2 to 1,25D2 via 25D2.


Asunto(s)
Proteínas Bacterianas/química , Sistema Enzimático del Citocromo P-450/química , Ergocalciferoles/química , Ingeniería de Proteínas , Sustitución de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Clonación Molecular , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Ergocalciferoles/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Hidroxilación , Simulación del Acoplamiento Molecular , Mutagénesis Sitio-Dirigida , Dominios Proteicos , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Streptomyces/química , Streptomyces/enzimología , Especificidad por Sustrato
17.
Int J Gynecol Pathol ; 36(6): 530-539, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28277316

RESUMEN

The term "MELF-pattern myometrial invasion" (MELF pattern) denotes an unusual morphology of myometrial invasion in endometrioid carcinomas, and is associated with frequent lymphovascular invasion and lymph node metastasis. In this study, tumor cells were directly collected from a MELF pattern site, using laser microdissection. Comprehensive microarray analysis of the genes was conducted, and based on the results, expression of a metastasis progression gene, CXCR4, and its ligands CXCL14 and CXCL12, was further investigated. In vitro studies of endometrioid carcinoma cell lines revealed elevated invasion activity in a manner dependent on the CXCL14-CXCR4 or CXCL12-CXCR4 axis. Immunohistochemical analysis of 93 (MELF group, 46; non-MELF group, 47) cases illustrated CXCR4 was expressed in all endometrioid carcinomas, while based on CXCL14 and CXCL12 expression score, high proportions of cells were positive at the sites of the MELF pattern (P<0.01). There was no significant difference in progression-free survival or overall survival between MELF group and non-MELF group by Kaplan-Meier analysis. These findings suggest a possibility that cells at the sites of MELF pattern had acquired increased invasiveness through the function of the CXCL14-CXCR4 and CXCL12-CXCR4 axes.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Carcinoma Endometrioide/patología , Quimiocina CXCL12/metabolismo , Quimiocinas CXC/metabolismo , Neoplasias Endometriales/patología , Receptores CXCR4/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Carcinoma Endometrioide/metabolismo , Carcinoma Endometrioide/cirugía , Línea Celular , Supervivencia sin Enfermedad , Neoplasias Endometriales/metabolismo , Femenino , Humanos , Estimación de Kaplan-Meier , Captura por Microdisección con Láser , Metástasis Linfática , Persona de Mediana Edad , Miometrio/patología , Análisis de Secuencia por Matrices de Oligonucleótidos
18.
Biochem Biophys Res Commun ; 473(4): 853-858, 2016 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-27037023

RESUMEN

Our previous studies revealed that the double variants of CYP105A1- R73A/R84A and R73V/R84A-show high levels of activity with respect to conversion of vitamin D3 to its biologically active form, 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3). In this study, we found that both the double variants were also capable of converting vitamin D2 to its active form, that is, 1α,25-dihydroxyvitamin D2 (1α,25(OH)2D2), via 25(OH)D2, whereas its 1α-hydroxylation activity toward 25(OH)D2 was much lower than that toward 25(OH)D3. Comparison of the wild type and the double variants revealed that the amino acid substitutions remarkably enhanced both 25- and 26-hydroxylation activity toward vitamin D2. After 25-hydroxylation of vitamin D2, further hydroxylation at C26 may occur frequently without the release of 25(OH)D2 from the substrate-binding pocket. Thus, the double variants of CYP105A1 are quite useful to produce 25,26(OH)2D2 that is one of the metabolites of vitamin D2 detected in human serum.


Asunto(s)
Proteínas Bacterianas/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Ergocalciferoles/química , Ergocalciferoles/metabolismo , Ingeniería de Proteínas , Proteínas Bacterianas/genética , Sistema Enzimático del Citocromo P-450/genética , Activación Enzimática , Hidroxilación/fisiología , Oxigenasas de Función Mixta/química , Oxigenasas de Función Mixta/metabolismo
19.
Mol Pharm ; 13(7): 2274-82, 2016 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-27241161

RESUMEN

Glucuronidation is one of the most common pathways in mammals for detoxification and elimination of hydrophobic xenobiotic compounds, including many drugs. Metabolites, however, can form active or toxic compounds, such as acyl glucuronides, and their safety assessment is often needed. The absence of efficient means for in vitro synthesis of correct glucuronide metabolites frequently limits such toxicological analyses. To overcome this hurdle we have developed a new approach, the essence of which is a coexpression system containing a human, or another mammalian UDP-glucuronosyltransferases (UGTs), as well as UDP-glucose-6-dehydrogenase (UGDH), within the budding yeast, Saccharomyces cerevisiae. The system was first tested using resting yeast cells coexpressing UGDH and human UGT1A6, 7-hydroxycoumarin as the substrate, in a reaction medium containing 8% glucose, serving as a source of UDP-glucuronic acid. Glucuronides were readily formed and recovered from the medium. Subsequently, by selecting suitable mammalian UGT enzyme for the coexpression system we could obtain the desired glucuronides of various compounds, including molecules with multiple conjugation sites and acyl glucuronides of several carboxylic acid containing drugs, namely, mefenamic acid, flufenamic acid, and zomepirac. In conclusion, a new and flexible yeast system with mammalian UGTs has been developed that exhibits a capacity for efficient production of various glucuronides, including acyl glucuronides.


Asunto(s)
Glucurónidos/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomycetales/metabolismo , Animales , Ácidos Carboxílicos/metabolismo , Glucuronosiltransferasa/metabolismo , Humanos , Oxidorreductasas/metabolismo , Umbeliferonas/metabolismo
20.
Int J Mol Sci ; 17(2)2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26840307

RESUMEN

Structurally similar double-point modified analogues of 1,25-dihydroxyvitamin D2 (1,25D2) were screened in vitro for their pro-differentiating activity against the promyeloid cell line HL60. Their affinities towards human full length vitamin D receptor (VDR) and metabolic stability against human vitamin D 24-hydroxylase (CYP24A1) were also tested. The analogues (PRI-1730, PRI-1731, PRI-1732, PRI-1733 and PRI-1734) contained 5,6-trans modification of the A-ring and of the triene system, additional hydroxyl or unsaturation at C-22 in the side chain and reversed absolute configuration (24-epi) at C-24 of 1,25D2. As presented in this paper, introduction of selected structural modifications simultaneously in two distinct parts of the vitamin D molecule resulted in a divergent group of analogues. Analogues showed lower VDR affinity in comparison to that of the parent hormones, 1,25D2 and 1,25D3, and they caused effective HL60 cell differentiation only at high concentrations of 100 nM and above. Unexpectedly, introducing of a 5,6-trans modification combined with C-22 hydroxyl and 24-epi configuration switched off entirely the cell differentiation activity of the analogue (PRI-1734). However, this analogue remained a moderate substrate for CYP24A1, as it was metabolized at 22%, compared to 35% for 1,25D2. Other analogues from this series were either less (12% for PRI-1731 and PRI-1733) or more (52% for PRI-1732) resistant to the enzymatic deactivation. Although the inactive analogue PRI-1734 failed to show VDR antagonism, when tested in HL60 cells, its structure might be a good starting point for our design of a vitamin D antagonist.


Asunto(s)
Antineoplásicos/farmacología , Ensayos de Selección de Medicamentos Antitumorales/métodos , Ergocalciferoles/farmacología , Leucemia/enzimología , Antineoplásicos/química , Diferenciación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ergocalciferoles/química , Células HL-60 , Humanos , Leucemia/tratamiento farmacológico , Leucemia/metabolismo , Estructura Molecular , Receptores de Calcitriol/metabolismo , Relación Estructura-Actividad , Especificidad por Sustrato , Vitamina D3 24-Hidroxilasa/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA