Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Brain Behav Immun ; 116: 329-348, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38142917

RESUMEN

BACKGROUND: Latent chronic inflammation has been proposed as a key mediator of multiple derangements in metabolic syndrome (MetS), which are increasingly becoming recognized as risk factors for age-related cognitive decline. However, the question remains whether latent chronic inflammation indeed induces brain inflammation and cognitive decline. METHODS: A mouse model of latent chronic inflammation was constructed by a chronic subcutaneous infusion of low dose lipopolysaccharide (LPS) for four weeks. A receptor for advanced glycation end products (RAGE) knockout mouse, a chimeric myeloid cell specific RAGE-deficient mouse established by bone marrow transplantation and a human endogenous secretory RAGE (esRAGE) overexpressing adenovirus system were utilized to examine the role of RAGE in vivo. The cognitive function was examined by a Y-maze test, and the expression level of genes was determined by quantitative RT-PCR, western blot, immunohistochemical staining, or ELISA assays. RESULTS: Latent chronic inflammation induced MetS features in C57BL/6J mice, which were associated with cognitive decline and brain inflammation characterized by microgliosis, monocyte infiltration and endothelial inflammation, without significant changes in circulating cytokines including TNF-α and IL-1ß. These changes as well as cognitive impairment were rescued in RAGE knockout mice or chimeric mice lacking RAGE in bone marrow cells. P-selectin glycoprotein ligand-1 (PSGL-1), a critical adhesion molecule, was induced in circulating mononuclear cells in latent chronic inflammation in wild-type but not RAGE knockout mice. These inflammatory changes and cognitive decline induced in the wild-type mice were ameliorated by an adenoviral increase in circulating esRAGE. Meanwhile, chimeric RAGE knockout mice possessing RAGE in myeloid cells were still resistant to cognitive decline and brain inflammation. CONCLUSIONS: These findings indicate that RAGE in inflammatory cells is necessary to mediate stimuli of latent chronic inflammation that cause brain inflammation and cognitive decline, potentially by orchestrating monocyte activation via regulation of PSGL-1 expression. Our results also suggest esRAGE-mediated inflammatory regulation as a potential therapeutic option for cognitive dysfunction in MetS with latent chronic inflammation.


Asunto(s)
Disfunción Cognitiva , Encefalitis , Síndrome Metabólico , Animales , Humanos , Ratones , Inflamación , Ratones Endogámicos C57BL , Ratones Noqueados , Receptor para Productos Finales de Glicación Avanzada
2.
Cell Physiol Biochem ; 57(4): 212-225, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37463410

RESUMEN

BACKGROUND/AIMS: Pancreatic cancer has the poorest survival rate among all cancer types. Therefore, it is essential to develop an effective treatment strategy for this cancer. METHODS: We performed carbon ion radiotherapy (CIRT) in human pancreatic cancer cell lines and analyzed their survival, apoptosis, necrosis, and autophagy. To investigate the role of CIRT-induced autophagy, autophagy inhibitors were added to cells prior to CIRT. To evaluate tumor formation, we inoculated CIRT-treated murine pancreatic cancer cells on the flank of syngeneic mice and measured tumor weight. We immunohistochemically measured autophagy levels in surgical sections from patients with pancreatic cancer who received neoadjuvant chemotherapy (NAC) plus CIRT or NAC alone. RESULTS: CIRT reduced the survival fraction of pancreatic cancer cells and induced apoptotic and necrotic alterations, along with autophagy. Preincubation with an autophagy inhibitor accelerated cell death. Mice inoculated with control pancreatic cancer cells developed tumors, while those inoculated with CIRT/autophagy inhibitor-treated cells showed significant evasion. Surgical specimens of NAC-treated patients expressed autophagy comparable to control patients, while those in the NAC plus CIRT group expressed little autophagy and nuclear staining. CONCLUSION: CIRT effectively killed the pancreatic cancer cells by inhibiting their autophagy-inducing abilities.


Asunto(s)
Radioterapia de Iones Pesados , Neoplasias Pancreáticas , Humanos , Animales , Ratones , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/radioterapia , Neoplasias Pancreáticas/metabolismo , Autofagia , Resultado del Tratamiento , Neoplasias Pancreáticas
3.
Allergol Int ; 72(2): 324-331, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37010996

RESUMEN

BACKGROUND: Interleukin-33 (IL-33) is involved in type 2 innate immunity by inducing type 2 cytokines, such as IL-5 and IL-13, through the activation of group 2 innate lymphoid cells (ILC2s) or T helper 2 (Th2) cells. We previously reported that mice overexpressing IL-33 (IL-33Tg) in the cornea and conjunctiva spontaneously develop atopic keratoconjunctivitis-like inflammation. Despite previous studies, it is not fully understood what types of immune cells contribute to the disease process of IL-33-induced keratoconjunctivitis. METHODS: To defect Th2 cells, IL-33Tg mice were crossed with Rag2KO mice. To defect ILC2s, IL-33Tg mice received bone marrow transplantations from B6.C3(Cg)-Rorasg/J mice that lacked ILC2. Immunostaining techniques were used to determine where ILC2 is distributed in the cornea and conjunctiva. We analyzed the transcriptomes of ILC2 from the conjunctiva by using single-cell RNA-seq analysis. To investigate whether tacrolimus reduces type 2 cytokine production by ILC2, ILC2 was cultured with tacrolimus, and the percentage of cytokine-producing ILC2 was examined. To investigate whether tacrolimus can inhibit IL-33-induced keratoconjunctivitis in vivo, IL-33Tg mice were treated with tacrolimus eye drops. RESULTS: ILC2 infiltrated the conjunctival epithelium and subepithelial tissue. Keratoconjunctivitis developed spontaneously in Rag2KO/IL-33Tg mice, but keratoconjunctivitis was abolished in IL-33Tg mice lacking ILC2. ILC2 was not a uniform cluster but a heterogeneous cluster. Tacrolimus inhibited cytokine production from ILC2s in vitro, and tacrolimus eye drops inhibited keratoconjunctivitis in IL-33Tg mice in vivo. CONCLUSIONS: ILC2 plays a pivotal role in IL-33-induced keratoconjunctivitis in mice.


Asunto(s)
Inmunidad Innata , Queratoconjuntivitis , Linfocitos , Animales , Ratones , Citocinas , Interleucina-33/efectos adversos , Queratoconjuntivitis/inducido químicamente , Queratoconjuntivitis/inmunología , Tacrolimus/farmacología
4.
Nat Immunol ; 11(10): 936-44, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20729857

RESUMEN

Polarization of macrophages to M1 or M2 cells is important for mounting responses against bacterial and helminth infections, respectively. Jumonji domain containing-3 (Jmjd3), a histone 3 Lys27 (H3K27) demethylase, has been implicated in the activation of macrophages. Here we show that Jmjd3 is essential for M2 macrophage polarization in response to helminth infection and chitin, though Jmjd3 is dispensable for M1 responses. Furthermore, Jmjd3 (also known as Kdm6b) is essential for proper bone marrow macrophage differentiation, and this function depends on demethylase activity of Jmjd3. Jmjd3 deficiency affected trimethylation of H3K27 in only a limited number of genes. Among them, we identified Irf4 as encoding a key transcription factor that controls M2 macrophage polarization. Collectively, these results show that Jmjd3-mediated H3K27 demethylation is crucial for regulating M2 macrophage development leading to anti-helminth host responses.


Asunto(s)
Factores Reguladores del Interferón/inmunología , Histona Demetilasas con Dominio de Jumonji/inmunología , Activación de Macrófagos/inmunología , Macrófagos Alveolares/inmunología , Macrófagos/inmunología , Nippostrongylus/inmunología , Infecciones por Strongylida/inmunología , Animales , Diferenciación Celular , Polaridad Celular , Quitina/inmunología , Regulación Enzimológica de la Expresión Génica , Histona Demetilasas/metabolismo , Interacciones Huésped-Parásitos/inmunología , Factores Reguladores del Interferón/genética , Histona Demetilasas con Dominio de Jumonji/genética , Macrófagos/citología , Metilación , Ratones , Ratones Noqueados
5.
Biochem Biophys Res Commun ; 555: 168-174, 2021 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-33819747

RESUMEN

When animals are infected with helminthic parasites, resistant hosts mount type II helper T (Th2) immune responses to expel worms. Recent studies have clearly shown that epithelial cell-derived cytokines contribute to the induction of Th2 immune responses. Here we demonstrate the role of endogenous thymic stromal lymphopoietin (TSLP) for protection against Strongyloides venezuelensis (S. venezuelensis) infection, utilizing TSLP receptor-deficient Crlf2-/- mice. The number of eggs per gram of feces (EPG) and worm burden were significantly higher in Crlf2-/- mice than in wild type (WT) mice. S. venezuelensis infection induced Tslp mRNA expression in the skin, lung, and intestine and also facilitated the accumulation of mast cells in the intestine in a TSLP-dependent manner. Furthermore, CD4+ T cells from S. venezuelensis-infected Crlf2-/- mice showed diminished capacity to produce Th2 cytokines in the early stage of infection. Finally, CD4+ cell-depleted Crlf2-/- mice still showed higher EPG counts and worm burden than CD4+ cell-depleted WT mice, indicating that TSLP contributes to protecting mice against S. venezuelensis infection in both CD4+ T cell-dependent and -independent manners.


Asunto(s)
Linfocitos T CD4-Positivos/parasitología , Citocinas/fisiología , Estrongiloidiasis/inmunología , Animales , Linfocitos T CD4-Positivos/inmunología , Resistencia a la Enfermedad/fisiología , Heces/parasitología , Interacciones Huésped-Parásitos , Inmunoglobulina E/sangre , Inmunoglobulinas/genética , Intestinos/parasitología , Masculino , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Mutantes , Receptores de Citocinas/genética , Estrongiloidiasis/parasitología , Linfopoyetina del Estroma Tímico
6.
Nat Immunol ; 10(7): 706-12, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19465908

RESUMEN

Basophils express major histocompatibility complex class II, CD80 and CD86 and produce interleukin 4 (IL-4) in various conditions. Here we show that when incubated with IL-3 and antigen or complexes of antigen and immunoglobulin E (IgE), basophils internalized, processed and presented antigen as complexes of peptide and major histocompatibility complex class II and produced IL-4. Intravenous administration of ovalbumin-pulsed basophils into naive mice 'preferentially' induced the development of naive ovalbumin-specific CD4+ T cells into T helper type 2 (T(H)2) cells. Mice immunized in this way, when challenged by intravenous administration of ovalbumin, promptly produced ovalbumin-specific IgG1 and IgE. Finally, intravenous administration of IgE complexes rapidly induced T(H)2 cells only in the presence of endogenous basophils, which suggests that basophils are potent antigen-presenting cells that 'preferentially' augment T(H)2-IgE responses by capturing IgE complex.


Asunto(s)
Células Presentadoras de Antígenos/inmunología , Basófilos/inmunología , Linfocitos T CD4-Positivos/inmunología , Antígenos de Histocompatibilidad Clase II/inmunología , Inmunoglobulina E/inmunología , Interleucina-4/metabolismo , Traslado Adoptivo , Animales , Células Presentadoras de Antígenos/citología , Células Presentadoras de Antígenos/metabolismo , Basófilos/metabolismo , Basófilos/trasplante , Linfocitos T CD4-Positivos/citología , Linfocitos T CD4-Positivos/metabolismo , Citometría de Flujo , Antígenos de Histocompatibilidad Clase II/química , Interleucina-4/genética , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Ovalbúmina/inmunología , Péptidos/química , Péptidos/inmunología , Bazo/citología , Bazo/inmunología , Strongyloides/inmunología , Estrongiloidiasis/inmunología , Estrongiloidiasis/parasitología , Células Th2/inmunología
7.
Int Immunol ; 32(10): 637-652, 2020 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-32484881

RESUMEN

Intestinal nematode infection induces pulmonary eosinophilia via IL-33, although the mechanism of pulmonary IL-33 induction remains unclear. Because nematode migration damages lungs, we speculated that lung-derived damage-associated molecular patterns (DAMPs) possess an IL-33-inducing activity (IL33ia). Indeed, intra-nasal administration of a lung extract induced IL-33 production in lungs. Additionally, lung extracts increased Il33 mRNA expression in primary lung fibroblasts. Proteomic analysis identified retinoblastoma-binding protein 9 (RBBP9) as a major DAMP with IL33ia. RBBP9 was originally discovered as a protein that provides cells with resistance to the growth inhibitory effect of transforming growth factor (TGF)-ß1. Here, we found that stimulation by RBBP9 induced primary fibroblasts to produce prostaglandin E2 (PGE2) that, in turn, induced fibroblasts to produce IL-33. RBBP9-activated fibroblasts expressed mRNAs of cyclooxygenase-2 (COX-2) and PGE2 synthase-1 that convert arachidonic acid to PGE2. Furthermore, they expressed PGE2 receptors E-prostanoid (EP) 2 and EP4. Thus, treatment with a COX-2 inhibitor or EP2 and/or EP4 receptor antagonists inhibited RBBP9-induced IL-33 production. Nematode infection induced pulmonary Il33 mRNA expression, which was inhibited by the COX-2 inhibitor or EP2 and EP4 antagonists, suggesting that nematode infection induced pulmonary Il33 mRNA via PGE2. RBBP9 was expressed constitutively in the lung in the steady state, which did not increase after nematode infection. Finally, we found that Rbbp9-deficient mice had a significantly diminished capacity to increase pulmonary Il33 mRNA expression following nematode infection. Thus, the PGE2-EP2/EP4 pathway activated by RBBP9 released from damaged lungs is important for pulmonary IL-33 production in nematode-infected animals.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Dinoprostona/biosíntesis , Fibroblastos/metabolismo , Interleucina-33/biosíntesis , Proteínas de Neoplasias/metabolismo , Serina Proteasas/metabolismo , Animales , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Endogámicos ICR
8.
J Allergy Clin Immunol ; 143(3): 1153-1162.e12, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30012514

RESUMEN

BACKGROUND: Protease allergens disrupt epithelial barriers to exert their allergenicity. Cystatin SN (encoded by CST1) is an endogenous cysteine protease inhibitor upregulated in nasal epithelia in patients with allergic rhinitis (AR). OBJECTIVE: We sought to investigate the protective effect of human cystatin SN on AR symptoms using pollen-induced AR mouse models. METHODS: We performed an in vitro protease activity assay to evaluate the effect of recombinant human cystatin SN (rhCystatin SN) on Japanese cedar (JC) or ragweed proteases. A human nasal epithelial cell line, RPMI 2650, was used to examine tight junction (TJ) disruption in vitro. Mice were sensitized and nasally challenged with JC or ragweed pollens with or without rhCystatin SN to examine the effect of rhCystatin SN on AR symptoms and the epithelial barrier in vivo. Because mice lack CST1, we generated transgenic (Tg) mice expressing human CST1 under control of its genomic control region (hCST1-Tg mice) to examine the role of cystatin SN in physiologically expressed conditions. RESULTS: rhCystatin SN inhibited JC but not ragweed protease activities and prevented JC-induced but not ragweed-induced TJ disruption in vitro. Exogenous administration of rhCystatin SN ameliorated JC-induced but not ragweed-induced sneezing and nasal TJ disruption in vivo. Furthermore, hCST1-Tg mice showed decreased JC-induced but not ragweed-induced sneezing symptoms and nasal TJ disruption compared with wild-type mice. CONCLUSION: Human cystatin SN suppresses AR symptoms through inhibiting allergen protease activities and protecting the nasal TJ barrier in an allergen-specific manner. We propose that upregulation of nasal endogenous protease inhibitors, including cystatin SN, is a novel therapeutic strategy for protease allergen-induced AR.


Asunto(s)
Rinitis Alérgica/inmunología , Cistatinas Salivales/inmunología , Alérgenos/inmunología , Ambrosia/enzimología , Ambrosia/inmunología , Animales , Antígenos de Plantas/inmunología , Línea Celular , Cryptomeria/enzimología , Cryptomeria/inmunología , Modelos Animales de Enfermedad , Humanos , Ratones Endogámicos BALB C , Ratones Endogámicos ICR , Ratones Transgénicos , Mucosa Nasal/inmunología , Péptido Hidrolasas/metabolismo , Extractos Vegetales/inmunología , Polen/inmunología , Inhibidores de Proteasas/farmacología , Proteínas Recombinantes/farmacología , Rinitis Alérgica/genética , Cistatinas Salivales/genética , Cistatinas Salivales/farmacología , Uniones Estrechas/metabolismo
9.
Allergol Int ; 69(1): 111-120, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31272904

RESUMEN

BACKGROUND: Periostin is a matricellular protein belonging to the fasciclin family, playing a role for the pathogenesis of allergic diseases by binding to integrins on cell surfaces. Serum periostin is elevated in various allergic diseases reflecting type 2 inflammation and tissue remodeling so that for allergic diseases, periostin is expected to be a novel biomarker for diagnosis, assessing severity or prognosis, and predicting responsiveness to treatments. We have previously shown that most serum periostin exists in the oligomeric form by intermolecular disulfide bonds. METHODS: In this study, we examined how periostin forms a complex in serum, whether the periostin complex in serum is functional, and whether the complex formation interferes with reactivity to anti-periostin Abs. RESULTS: We found that periostin formed a complex with IgA1 at a 1:1 ratio. The periostin in the serum complex contained at least five different isoforms. However, IgA was not essential for the oligomeric formation of periostin in mouse serum or in IgA-lacking serum. The periostin-IgA complex in human serum was functional, sustaining the ability to bind to αVß3 integrin on cell surfaces. Moreover, periostin formed the complex with IgA broadly, which interferes the binding of the Abs recognizing all of the domains except the R4 domain to periostin. CONCLUSIONS: Periostin is a novel member of the IgA-associated molecules. These results are of great potential use to understand the pathological roles of periostin in allergic diseases and, from a practical standpoint, to develop diagnostics or therapeutic agents against periostin.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Inmunoglobulina A/metabolismo , Animales , Humanos , Ratones
10.
Int Immunol ; 30(3): 93-102, 2018 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-29346656

RESUMEN

Helminth infection remains common in developing countries, where residents who suffer from the consequences of such infections can develop serious physical and mental disorders and often persist in the face of serious economic problems. Intestinal nematode infection induces the development of Th2-type immune responses including the B-cell IgE response; additionally, this infection induces an increase in the numbers and activation of various types of effector cells, such as mast cells, eosinophils and basophils, as well as the induction of goblet cell hyperplasia, anti-microbial peptide production and smooth-muscle contraction, all of which contribute to expel nematodes. Innate immunity is important in efforts to eliminate helminth infection; cytokines, including IL-25, IL-33 and thymic stromal lymphopoietin, which are products of epithelial cells and mast cells, induce Th2 cells and group 2 innate lymphoid cells to proliferate and produce Th2 cytokines. Nematodes also facilitate chronic infection by suppression of immune reactions through an increased number of Treg cells. Immunosuppression by parasite infection may ultimately be beneficial for the host animals; indeed, a negative correlation has been found between parasite infection and the prevalence of inflammatory disease in humans.


Asunto(s)
Helmintiasis/inmunología , Helmintiasis/parasitología , Interacciones Huésped-Patógeno/inmunología , Parasitosis Intestinales/inmunología , Parasitosis Intestinales/parasitología , Intestinos/inmunología , Intestinos/parasitología , Nematodos/inmunología , Animales , Humanos , Linfocitos T/inmunología
11.
Int J Mol Sci ; 20(3)2019 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-30717382

RESUMEN

Interleukin (IL)-18 was originally discovered as a factor that enhanced IFN-γ production from anti-CD3-stimulated Th1 cells, especially in the presence of IL-12. Upon stimulation with Ag plus IL-12, naïve T cells develop into IL-18 receptor (IL-18R) expressing Th1 cells, which increase IFN-γ production in response to IL-18 stimulation. Therefore, IL-12 is a commitment factor that induces the development of Th1 cells. In contrast, IL-18 is a proinflammatory cytokine that facilitates type 1 responses. However, IL-18 without IL-12 but with IL-2, stimulates NK cells, CD4⁺ NKT cells, and established Th1 cells, to produce IL-3, IL-9, and IL-13. Furthermore, together with IL-3, IL-18 stimulates mast cells and basophils to produce IL-4, IL-13, and chemical mediators such as histamine. Therefore, IL-18 is a cytokine that stimulates various cell types and has pleiotropic functions. IL-18 is a member of the IL-1 family of cytokines. IL-18 demonstrates a unique function by binding to a specific receptor expressed on various types of cells. In this review article, we will focus on the unique features of IL-18 in health and disease in experimental animals and humans.


Asunto(s)
Susceptibilidad a Enfermedades , Interleucina-18/genética , Interleucina-18/metabolismo , Animales , Regulación de la Expresión Génica , Humanos , Sistema Inmunológico/inmunología , Sistema Inmunológico/metabolismo , Interleucina-18/antagonistas & inhibidores , Interleucina-33/genética , Interleucina-33/metabolismo , Terapia Molecular Dirigida , Unión Proteica , Receptores de Interleucina-18/metabolismo , Transducción de Señal
12.
Int Immunol ; 29(5): 221-233, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28541554

RESUMEN

Both Th2 cells and group 2 innate lymphoid cells (ILC2s) contribute to allergic diseases. However, their exact role and relationship in nasal allergic disorders are unclear. In this study, we investigated the cooperation of Th2 cells and ILC2s in a mouse model of nasal allergic disorder. To differentially activate Th2 cells and/or ILC2s in nasal mucosa, mice were intra-nasally administered ovalbumin (OVA) antigen, papain, an ILC2-activator, or both for 2 weeks. Epithelial thickness and number of eosinophils in the nasal mucosa were evaluated at 24 h after the final challenge. Intra-nasal administration of OVA and papain preferentially activated Th2 cells and ILC2s, respectively, in the nose. Both OVA and papain increased the nasal epithelial thickness and number of eosinophils, and their coadministration significantly enhanced the symptoms. Although T-/B-cell-deficient mice showed severely decreased nasal symptoms induced by OVA or OVA-plus-papain, the mice still showed slight papain-induced nasal symptoms. In ILC2-deficient mice, OVA-plus-papain-induced nasal symptoms were suppressed to the same level as OVA-alone. Similarly, IL-33- and ST2-deficient mice showed decreased OVA-plus-papain-induced nasal symptoms. IL-5 induced eosinophilia only, but IL-13 contributed to both nasal epithelial thickening and eosinophilia induced by OVA-plus-papain. Dexamethasone ameliorated OVA-alone-induced nasal epithelial thickening. However, OVA-plus-papain-induced nasal epithelial thickening was only partially controlled by dexamethasone. These results demonstrate that IL-33/ST2-pathway-mediated ILC2 activation exacerbated Th2-cell-induced nasal inflammation by producing IL-13. Although Th2-cell-alone-induced nasal inflammation was controlled by corticosteroid treatment, the activation of ILC2s conferred treatment resistance. Therefore, ILC2s and their activators could be therapeutic targets for treatment-refractory nasal allergic disorders.


Asunto(s)
Hipersensibilidad/inmunología , Inflamación/inmunología , Linfocitos/inmunología , Nariz/inmunología , Células Th2/inmunología , Corticoesteroides/uso terapéutico , Animales , Comunicación Celular , Citocinas/metabolismo , Resistencia a Medicamentos , Hipersensibilidad/tratamiento farmacológico , Inmunidad Innata , Inflamación/tratamiento farmacológico , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados
13.
J Allergy Clin Immunol ; 139(1): 258-268.e10, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27287257

RESUMEN

BACKGROUND: Allergen-mediated cross-linking of IgE on mast cells/basophils is a well-recognized trigger for type 1 allergic diseases such as allergic rhinitis (AR). However, allergens may not be the sole trigger for AR, and several allergic-like reactions are induced by non-IgE-mediated mechanisms. OBJECTIVE: We sought to describe a novel non-IgE-mediated, endotoxin-triggered nasal type-1-hypersensitivity-like reaction in mice. METHODS: To investigate whether endotoxin affects sneezing responses, mice were intraperitoneally immunized with ovalbumin (OVA), then nasally challenged with endotoxin-free or endotoxin-containing OVA. To investigate the role of T cells and mechanisms of the endotoxin-induced response, mice were adoptively transferred with in vitro-differentiated OVA-specific TH2 cells, then nasally challenged with endotoxin-free or endotoxin-containing OVA. RESULTS: Endotoxin-containing, but not endotoxin-free, OVA elicited sneezing responses in mice independent from IgE-mediated signaling. OVA-specific TH2 cell adoptive transfer to mice demonstrated that local activation of antigen-specific TH2 cells was required for the response. The Toll-like receptor 4-myeloid differentiation factor 88 signaling pathway was indispensable for endotoxin-containing OVA-elicited rhinitis. In addition, LPS directly triggered sneezing responses in OVA-specific TH2-transferred and nasally endotoxin-free OVA-primed mice. Although antihistamines suppressed sneezing responses, mast-cell/basophil-depleted mice had normal sneezing responses to endotoxin-containing OVA. Clodronate treatment abrogated endotoxin-containing OVA-elicited rhinitis, suggesting the involvement of monocytes/macrophages in this response. CONCLUSIONS: Antigen-specific nasal activation of CD4+ T cells followed by endotoxin exposure induces mast cell/basophil-independent histamine release in the nose that elicits sneezing responses. Thus, environmental or nasal residential bacteria may exacerbate AR symptoms. In addition, this novel phenomenon might explain currently unknown mechanisms in allergic(-like) disorders.


Asunto(s)
Alérgenos/inmunología , Endotoxinas/inmunología , Ovalbúmina/inmunología , Rinitis Alérgica/inmunología , Linfocitos T/inmunología , Animales , Histamina/inmunología , Inmunoglobulina E/inmunología , Ratones Endogámicos BALB C , Ratones Noqueados , Factor 88 de Diferenciación Mieloide/inmunología , Mucosa Nasal , Hipersensibilidad Respiratoria , Receptor Toll-Like 4/inmunología
14.
Int Immunol ; 28(2): 65-76, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26428949

RESUMEN

Thymic stromal lymphopoietin (TSLP) and IL-33 are epithelium-derived proallergic cytokines that contribute to allergic diseases. Although the involvement of TSLP in allergic rhinitis (AR) is suggested, the exact role of TSLP in AR is poorly understood. Furthermore, the relative contribution of TSLP and IL-33 in nasal allergic responses has not been described. In this study, we examined the roles of TSLP and IL-33 in AR by analyzing acute and chronic AR models. Acute AR mice were intraperitoneally immunized with ragweed, then intranasally challenged with ragweed pollen for four consecutive days. Chronic AR mice were nasally administrated ragweed pollen on consecutive days for 3 weeks. In both models, TSLP receptor (TSLPR)-deficient mice showed defective sneezing responses and reduced serum ragweed-specific IgE levels compared with wild-type (WT) mice. Analyses of bone-marrow chimeric mice demonstrated that hematopoietic cells were responsible for defective sneezing in TSLPR-deficient mice. In addition, FcεRI(+)-cell-specific TSLPR-deficient mice showed partial but significant reduction in sneezing responses. Of note, Th2 activation and nasal eosinophilia were comparable between WT and TSLPR-deficient mice. ST2- and IL-33-deficient mice showed defective Th2 activation and nasal eosinophilia to acute, but not chronic, ragweed exposure. TSLPR and ST2 double-deficient mice showed defective Th2 activation and nasal eosinophilia even after chronic ragweed exposure. These results demonstrate that TSLPR signaling is critical for the early phase response of AR by controlling the IgE-mast-cell/basophil pathway. The IL-33/ST2 pathway is central to nasal Th2 activation during acute allergen exposure, but both TSLPR and ST2 contribute to Th2 responses in chronically allergen-exposed mice.


Asunto(s)
Citocinas/metabolismo , Proteína 1 Similar al Receptor de Interleucina-1/metabolismo , Interleucina-33/metabolismo , Mucosa Nasal/inmunología , Rinitis Alérgica/inmunología , Células Th2/fisiología , Enfermedad Aguda , Alérgenos/inmunología , Ambrosia , Animales , Antígenos de Plantas/inmunología , Enfermedad Crónica , Humanos , Inmunoglobulinas/genética , Proteína 1 Similar al Receptor de Interleucina-1/genética , Interleucina-33/genética , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Polen/inmunología , Receptores de Citocinas/genética , Receptores de IgE/genética , Transducción de Señal/genética , Linfopoyetina del Estroma Tímico
15.
Proc Natl Acad Sci U S A ; 110(34): 13921-6, 2013 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-23918359

RESUMEN

Transgenic mice expressing the mouse interleukin 33 (IL-33) gene driven by a keratin 14 promoter were generated. The skin-selective expression of the IL-33 gene was enhanced, and intense immunofluorescence for IL-33 was evident in the nuclei of the epidermis. Spontaneous itchy dermatitis developed in those mice at 6-8 wk of age in specific pathogen-free conditions. In the lesional skin, the epidermis was thickened and the eosinophils were infiltrated with increased expression of the eosinophil peroxidase and major basic protein genes. Mast cells were also abundant there, and blood histamine and total IgE levels were high. Those phenotypes closely resemble the features of atopic dermatitis. In peripheral blood and lesional skin, IL-5, IL-13, regulated upon activation, normally T-expressed, and presumably secreted (RANTES)/CCL5, and Eotaxin 1/CCL11 were increased, whereas TNF-α, IFN-γ, and thymic stromal lymphopoietin (TSLP) were unaltered. Furthermore, the proportion of group 2 innate lymphoid cells (ILC2s), which produce IL-5, were significantly increased in the lesional skin, peripheral blood, and regional lymph nodes. The dermatitis with eosinophil infiltration was improved by the administration of an anti-IL-5 antibody. These results suggest that the expression of IL-33 in the skin activates an immune response involving ILC2 and that this process might play a crucial role in the pathogenesis of allergic inflammation that is characteristic of atopic dermatitis.


Asunto(s)
Dermatitis Atópica/inmunología , Inmunidad Innata/inmunología , Interleucinas/metabolismo , Piel/inmunología , Animales , Citocinas/metabolismo , Cartilla de ADN/genética , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Histamina/sangre , Interleucina-33 , Interleucinas/genética , Ratones , Ratones Transgénicos , Reacción en Cadena en Tiempo Real de la Polimerasa , Piel/metabolismo , Organismos Libres de Patógenos Específicos
16.
Proc Natl Acad Sci U S A ; 109(9): 3451-6, 2012 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-22331917

RESUMEN

When animals are infected with helminthic parasites, resistant hosts show type II helper T immune responses to expel worms. Recently, natural helper (NH) cells or nuocytes, newly identified type II innate lymphoid cells, are shown to express ST2 (IL-33 receptor) and produce IL-5 and IL-13 when stimulated with IL-33. Here we show the relevant roles of endogenous IL-33 for Strongyloides venezuelensis infection-induced lung eosinophilic inflammation by using Il33(-/-) mice. Alveolar epithelial type II cells (ATII) express IL-33 in their nucleus. Infection with S. venezuelensis or intranasal administration of chitin increases in the number of ATII cells and the level of IL-33. S. venezuelensis infection induces pulmonary accumulation of NH cells, which, after being stimulated with IL-33, proliferate and produce IL-5 and IL-13. Furthermore, S. venezuelensis infected Rag2(-/-) mice increase the number of ATII cells, NH cells, and eosinophils and the expression of IL-33 in their lungs. Finally, IL-33-stimulated NH cells induce lung eosinophilic inflammation and might aid to expel infected worms in the lungs.


Asunto(s)
Interleucinas/fisiología , Parasitosis Intestinales/complicaciones , Linfocitos/inmunología , Eosinofilia Pulmonar/etiología , Estrongiloidiasis/complicaciones , Animales , Líquido del Lavado Bronquioalveolar/citología , Linfocitos T CD4-Positivos/inmunología , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Interleucina-13/biosíntesis , Interleucina-33 , Interleucina-5/biosíntesis , Interleucinas/biosíntesis , Interleucinas/deficiencia , Interleucinas/genética , Parasitosis Intestinales/inmunología , Parasitosis Intestinales/patología , Larva , Linfocitos/efectos de los fármacos , Linfocitos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Nippostrongylus/crecimiento & desarrollo , Nippostrongylus/inmunología , Alveolos Pulmonares/inmunología , Alveolos Pulmonares/patología , Eosinofilia Pulmonar/inmunología , Infecciones por Strongylida/complicaciones , Infecciones por Strongylida/inmunología , Infecciones por Strongylida/patología , Strongyloides/crecimiento & desarrollo , Strongyloides/inmunología , Estrongiloidiasis/inmunología , Estrongiloidiasis/patología
17.
Infect Immun ; 81(7): 2518-27, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23630966

RESUMEN

The host deploys a subset of immune responses to expel helminths, which differs depending on the nature of the helminth. Strongyloides venezuelensis, a counterpart of the human pathogen S. stercoralis, naturally infects rodents and has been used as an experimental model. Here we show that induction of immunoglobulin G (IgG) and IgE is a prerequisite for rapid expulsion of S. venezuelensis during a primary infection. Activation-induced cytidine deaminase-deficient (AID(-/-)) mice, which lack the ability to switch IgM to other isotypes, normally developed T-helper 2 (Th2) cells and intestinal mastocytosis after infection with S. venezuelensis. Although AID(-/-) mice expelled Nippostrongylus brasiliensis normally, they required a much longer period to expel S. venezuelensis than wild-type (WT) mice. Adoptive transfers of immune sera from S. venezuelensis-infected but not N. brasiliensis-infected mice restored the ability of AID(-/-) mice to promptly expel S. venezuelensis. Immune serum-derived IgG and IgE induced worm expulsion via Fc γ receptor III (FcγRIII) and Fc ε receptor I (FcεRI), respectively, and a mixture of IgG and IgE showed collaborative effects. Whereas FcγRIII(-/-) mice or FcεRIα(-/-) mice normally could expel S. venezuelensis, FcγRIII(-/-) mice, when their IgE was neutralized by anti-IgE, or FcεRIα(-/-) mice, when their IgG binding to FcγRIII was blocked by anti-FcγRIII, showed a markedly reduced ability to expel S. venezuelensis. These data reveal that IgG and IgE play redundant roles but act in concert to accelerate S. venezuelensis expulsion. Mast cell-deficient mice, even those equipped with immune serum-derived IgG or IgE, failed to expel S. venezuelensis promptly, suggesting that mast cells are cellular targets of IgG and IgE.


Asunto(s)
Inmunoglobulina E/inmunología , Inmunoglobulina G/inmunología , Strongyloides/inmunología , Estrongiloidiasis/inmunología , Animales , Proliferación Celular , Inmunización Pasiva , Cambio de Clase de Inmunoglobulina , Inmunoglobulina E/administración & dosificación , Inmunoglobulina G/administración & dosificación , Mastocitos/inmunología , Mastocitos/parasitología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Nippostrongylus/inmunología , Unión Proteica , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Receptores de IgE/inmunología , Receptores de IgG/inmunología , Infecciones por Strongylida/inmunología , Estrongiloidiasis/prevención & control , Células Th2/inmunología
18.
Int Immunol ; 22(6): 479-89, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20501612

RESUMEN

IL-33, a member of the IL-1 family of cytokines, is the ligand for ST2 (IL-33Ralpha chain). IL-33 has the capacity to induce T(h)2 cytokine production from T(h)2 cells, mast cells and basophils, indicating that IL-33 has the potential to induce T(h)2 cytokine-mediated allergic inflammation of the eye. Thus, we tested the pathological role of IL-33 in allergic conjunctivitis (AC). As reported elsewhere, animals immunized with ragweed pollen (RW)/alum and boosted with RW/PBS developed AC promptly (within 15 min) and conjunctival eosinophilic inflammation after a delay (within 24 h) in response to eye drop challenge with RW. Furthermore, RW-immunized mice, when topically challenged with both RW and IL-33, developed more striking eosinophilia in their conjunctiva without exacerbation of the clinical AC score. This in vivo IL-33 treatment significantly increased the capacity of T cells in the cervical lymph nodes of RW-immunized mice to produce IL-4, IL-5 and IL-13 upon challenge with anti-CD3 and anti-CD28 antibodies in vitro. Furthermore, the infiltrating cells were largely eosinophils and a small proportion of CD4(+) T cells, both of which express ST2. We also found that even splenic eosinophils express ST2 and show increased expression in response to IL-5, granulocyte-macrophage colony-stimulating factor (GM-CSF) or IL-33. Eosinophils, stimulated with IL-5 and/or GM-CSF, are responsive to IL-33, which induces production of IL-4 and chemokines. Finally, we showed that conjunctival tissues constitutively express biologically active IL-33, suggesting that IL-33 might play a crucial role in the induction and augmentation of AC.


Asunto(s)
Linfocitos T CD4-Positivos/efectos de los fármacos , Conjuntiva/efectos de los fármacos , Conjuntivitis Alérgica/inmunología , Interleucinas/administración & dosificación , Receptores de Interleucina/metabolismo , Compuestos de Alumbre/administración & dosificación , Ambrosia , Animales , Antígenos de Plantas/administración & dosificación , Antígenos de Plantas/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD4-Positivos/patología , Conjuntiva/inmunología , Conjuntiva/metabolismo , Conjuntiva/patología , Conjuntivitis Alérgica/fisiopatología , Citocinas/biosíntesis , Citocinas/genética , Citocinas/metabolismo , Eosinofilia , Humanos , Inmunización Secundaria , Proteína 1 Similar al Receptor de Interleucina-1 , Interleucina-33 , Activación de Linfocitos/efectos de los fármacos , Ratones , Ratones Endogámicos BALB C , Modelos Animales , Polen/inmunología , Receptores de Interleucina/genética
19.
Int Immunol ; 22(7): 561-70, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20497957

RESUMEN

We previously reported that intranasal challenge with ovalbumin (OVA) plus IL-18 induces airway hyperresponsiveness (AHR) and eosinophilic airway inflammation in mice with OVA-specific T(h)1 cells. These two conditions can be prevented by neutralizing anti-IFN-gamma and anti-IL-13 antibodies, respectively. The mice develop AHR and eosinophilic airway inflammation after challenge with OVA plus LPS instead of IL-18 and endogenous IL-18 is known to be involved. In contrast, IL-18 does not facilitate these changes in mice possessing OVA-specific T(h)2 cells. Here, we investigated whether IL-18 is involved in the development of asthma in mice immunized and challenged with bacterial proteins. Upon intranasal exposure to protein A (SpA) derived from Staphylococcus aureus, mice immunized with SpA exhibited AHR and peribronchial eosinophilic inflammation if IFN-gamma or IL-13 were present, respectively. The CD4(+) T cells from draining lymph nodes (DLNs) of the SpA-immunized and -challenged mice produced a robust IFN-gamma and IL-13 in response to immobilized anti-CD3 antibodies. Treatment with neutralizing anti-IL-18 antibodies prevented asthmatic inflammation concomitant with their impaired potential to express IFN-gamma and IL-13. Furthermore, naive mice that received the CD4(+) T cells from DLNs of SpA-immunized mice developed airway inflammation depending upon the presence of IL-18. Immunodeficient mice that received human PBMCs, which had been stimulated with SpA in vitro, developed dense peribronchial accumulation of human CD4(+) T cells upon SpA challenge. Neutralizing anti-human IL-18 antibodies protected against this airway inflammation. These results suggest the importance of IL-18 for the development of asthmatic inflammation associated with airway exposure to bacterial proteins.


Asunto(s)
Asma/inmunología , Proteínas Bacterianas/inmunología , Eosinofilia/inmunología , Inflamación , Interleucina-18/inmunología , Staphylococcus aureus/inmunología , Animales , Linfocitos T CD4-Positivos/inmunología , Inmunización , Interferón gamma/inmunología , Interleucina-13/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Desnudos
20.
JID Innov ; 1(1): 100003, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34909707

RESUMEN

Group 2 innate lymphoid cells (ILCs) are thought to contribute to the pathogenesis of atopic dermatitis (AD). IL-4 stimulates T helper type 2 (Th2) cells and ILC2s to proliferate and produce cytokines. Dupilumab, an antibody against the IL-4 receptor, is used in AD therapy. We speculated that its efficacy might involve blocking the activation of Th2 cells and ILC2s via IL-4. Here, we examined circulating Th2 cells and ILC2s in 27 Japanese patients with AD before and after the administration of dupilumab. Between 0 and 4 months after dupilumab administration, the percentages of Th2 cells and ILC2s were decreased. Notably, ILC2/3 ratio was decreased after dupilumab treatment. Interestingly, ILC2/3 ratio before dupilumab treatment were significantly higher in high responders than in low responders to dupilumab. To resolve the molecular signatures of the Th2 and ILC2s in AD, we sorted CD4+ T cells and ILCs from peripheral blood and analyzed their transcriptomes using the BD Rhapsody Single-cell RNA sequencing system. Between 0 and 4 months after dupilumab administration, the Th2 and ILC2 cluster gene signatures were downregulated. Thus, dupilumab might improve dermatitis by suppressing the Th2 cell and ILC2 populations and altering the Th2 and ILC2 repertoire in patients with AD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA