Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 620(7973): 323-327, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37344595

RESUMEN

The black phase of formamidinium lead iodide (FAPbI3) perovskite shows huge promise as an efficient photovoltaic, but it is not favoured energetically at room temperature, meaning that the undesirable yellow phases are always present alongside it during crystallization1-4. This problem has made it difficult to formulate the fast crystallization process of perovskite and develop guidelines governing the formation of black-phase FAPbI3 (refs. 5,6). Here we use in situ monitoring of the perovskite crystallization process to report an oriented nucleation mechanism that can help to avoid the presence of undesirable phases and improve the performance of photovoltaic devices in different film-processing scenarios. The resulting device has a demonstrated power-conversion efficiency of 25.4% (certified 25.0%) and the module, which has an area of 27.83 cm2, has achieved an impressive certified aperture efficiency of 21.4%.

2.
Nature ; 605(7909): 268-273, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35292753

RESUMEN

Optoelectronic devices consist of heterointerfaces formed between dissimilar semiconducting materials. The relative energy-level alignment between contacting semiconductors determinately affects the heterointerface charge injection and extraction dynamics. For perovskite solar cells (PSCs), the heterointerface between the top perovskite surface and a charge-transporting material is often treated for defect passivation1-4 to improve the PSC stability and performance. However, such surface treatments can also affect the heterointerface energetics1. Here we show that surface treatments may induce a negative work function shift (that is, more n-type), which activates halide migration to aggravate PSC instability. Therefore, despite the beneficial effects of surface passivation, this detrimental side effect limits the maximum stability improvement attainable for PSCs treated in this way. This trade-off between the beneficial and detrimental effects should guide further work on improving PSC stability via surface treatments.

3.
J Am Chem Soc ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38860601

RESUMEN

Emission from crystalline organic solids is often quenched by nonemissive energy-transfer deexcitation processes. While dispersion of fluorophores in polymers or other hosts has been used to enhance the emission intensity, this strategy results in randomization of guest orientation and optical losses at grain boundaries. Here, we report the doping of inherently nonemissive single crystals of anilinium bromide with three fluorescent organic molecules. The doping process equips the crystal with emission characteristics that tune from blue to deep orange. The emission intensity can be reversibly modulated by ferroelastic twinning, which causes the material to function as a multiemissive force sensor. This approach opens up new pathways in the manipulation of emissive properties in organic crystals and may have substantial implications for optoelectronic devices and sensors.

4.
Nat Mater ; 21(12): 1396-1402, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36396958

RESUMEN

Cations with suitable sizes to occupy an interstitial site of perovskite crystals have been widely used to inhibit ion migration and promote the performance and stability of perovskite optoelectronics. However, such interstitial doping inevitably leads to lattice microstrain that impairs the long-range ordering and stability of the crystals, causing a sacrificial trade-off. Here, we unravel the evident influence of the valence states of the interstitial cations on their efficacy to suppress the ion migration. Incorporation of a trivalent neodymium cation (Nd3+) effectively mitigates the ion migration in the perovskite lattice with a reduced dosage (0.08%) compared to a widely used monovalent cation dopant (Na+, 0.45%). The photovoltaic performances and operational stability of the prototypical perovskite solar cells are enhanced with a trace amount of Nd3+ doping while minimizing the sacrificial trade-off.

5.
Proc Natl Acad Sci U S A ; 117(34): 20397-20403, 2020 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-32788358

RESUMEN

Organic frameworks (OFs) offer a novel strategy for assembling organic semiconductors into robust networks that facilitate transport, especially the covalent organic frameworks (COFs). However, poor electrical conductivity through covalent bonds and insolubility of COFs limit their practical applications in organic electronics. It is known that the two-dimensional intralayer π∙∙∙π transfer dominates transport in organic semiconductors. However, because of extremely labile inherent features of noncovalent π∙∙∙π interaction, direct construction of robust frameworks via noncovalent π∙∙∙π interaction is a difficult task. Toward this goal, we report a robust noncovalent π∙∙∙π interaction-stacked organic framework, namely πOF, consisting of a permanent three-dimensional porous structure that is held together by pure intralayer noncovalent π∙∙∙π interactions. The elaborate porous structure, with a 1.69-nm supramaximal micropore, is composed of fully conjugated rigid aromatic tetragonal-disphenoid-shaped molecules with four identical platforms. πOF shows excellent thermostability and high recyclability and exhibits self-healing properties by which the parent porosity is recovered upon solvent annealing at room temperature. Taking advantage of the long-range π∙∙∙π interaction, we demonstrate remarkable transport properties of πOF in an organic-field-effect transistor, and the mobility displays relative superiority over the traditional COFs. These promising results position πOF in a direction toward porous and yet conductive materials for high-performance organic electronics.

6.
Small ; 18(8): e2103887, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34873843

RESUMEN

Superior bandgap tunability enables solution-processed halide perovskite a promising candidate for multi-junction photovoltaics (PVs). Particularly, optically coupling wide-gap perovskite by stacking with commercially available PVs such as silicon and CIGS (also known as 4-terminal tandem) simplifies the technology transfer process, and further advances the commercialization potential of perovskite technology. However, compared with matured PV materials and the phase-pure FAPbI3 , wide-gap perovskite still suffers from huge voltage deficits. Here, the authors take advantage of the synergetic effect behind a sequential fluoride and organic ammonium salt surface passivation strategy to control non-radiative energy losses, and obtained a 17.7% efficiency in infrared-transparent wide-gap perovskite solar cells (21.1% for opaque device), and achieved efficiencies of over 25% when stacked with commercial Si and CIGS products with original PCEs of 18-20% under a 4-terminal working condition.

7.
J Am Chem Soc ; 143(18): 6781-6786, 2021 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-33915050

RESUMEN

Postfabrication surface treatment strategies have been instrumental to the stability and performance improvements of halide perovskite photovoltaics in recent years. However, a consensus understanding of the complex reconstruction processes occurring at the surface is still lacking. Here, we combined complementary surface-sensitive and depth-resolved techniques to investigate the mechanistic reconstruction of the perovskite surface at the microscale level. We observed a reconstruction toward a more PbI2-rich top surface induced by the commonly used solvent isopropyl alcohol (IPA). We discuss several implications of this reconstruction on the surface thermodynamics and energetics. Particularly, our observations suggest that IPA assists in the adsorption process of organic ammonium salts to the surface to enhance their defect passivation effects.

8.
J Am Chem Soc ; 141(2): 952-960, 2019 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-30543112

RESUMEN

We report a computational study of mesoscale morphology and charge-transport properties of radially π-conjugated cycloparaphenylenes ([ n]CPPs) of various ring sizes ( n = 5-12, where n is the number of repeating phenyl units). These molecules are considered structural constituents of fullerenes and carbon nanotubes. [ n]CPP molecules are nested in a unique fashion in the solid state. Molecular dynamics simulations show that while intramolecular structural stability (order) increases with system size, intermolecular structural stability decreases. Density functional calculations reveal that reorganization energy, an important parameter in charge transfer, decreases as n is increased. Intermolecular charge-transfer electronic couplings in the solid state are relatively weak (due to curved π-conjugation and loose intermolecular contacts) and are on the same order of magnitude (∼10 meV) for each system. Intrinsic charge-carrier mobilities were simulated from kinetic Monte Carlo simulations; hole mobilities increased with system size and scaled as ∼ n4. We predict that disordered [ n]CPPs exhibit hole mobilities as high as 2 cm2/(V·s). Our computations show a strong correlation between reorganization energy and hole mobility (µ ∼ λ-4). Quantum mechanical calculations were performed on cofacially stacked molecular pairs for varying phenyl units and reveal that orbital delocalization is responsible for both decreasing reorganization energies and electronic couplings as n is increased.

9.
J Am Chem Soc ; 141(35): 13948-13953, 2019 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-31403287

RESUMEN

Surface effects usually become negligible on the micrometer or sub-micrometer scale due to lower surface-to-bulk ratio compared to nanomaterials. In lead halide perovskites, however, their "soft" nature renders them highly responsive to the external field, allowing for extended depth scale affected by the surface. Herein, by taking advantage of this unique feature of perovskites we demonstrate a methodology for property manipulation of perovskite thin films based on secondary grain growth, where tuning of the surface induces the internal property evolution of the entire perovskite film. While in conventional microelectronic techniques secondary grain growth generally involves harsh conditions such as high temperature and straining, it is easily triggered in a perovskite thin film by a simple surface post-treatment, producing enlarged grain sizes of up to 4 µm. The resulting photovoltaic devices exhibit significantly enhanced power conversion efficiency and operational stability over a course of 1000 h and an ambient shelf stability of over 4000 h while maintaining over 90% of its original efficiency.

10.
Phys Chem Chem Phys ; 21(2): 901-914, 2019 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-30560256

RESUMEN

We report a computational study on the effect of side-chain substitution, heteroaromatic substitution and unique crystal packing on the charge transport and mobility of three double helicene molecules. These double helicene (DH) molecules, having curved π-conjugation, are structural hybrids of non-planar [6]helicene and planar tribenzo[b,n,pqr]perylene (TBP). We find that side-chain substitution has only a effect on intrinsic electronic properties in DHs but dramatically impacts the packing arrangement, morphologies and transport network, exhibited in calculated charge transport parameters. Interestingly, the dimensionality of the transport evolves from one dimensional to three dimensional with side-chain substitution (DH2) and heteroaromatic substitution (DH3). Using two different well-known transport models, we have established a direct link between the morphology, transport connectivity, and hole mobilities. While both unsubstituted and substituted DHs exhibit high hole mobilities in the ordered phase, the results show that with inclusion of positional disorder, the mobilities of disordered DH1 and DH3 are lower while the mobility of DH2 remain nearly unchanged. We relate this effect to the dimensionality of their unique transport networks. These DH molecules are promising organic semiconductors with high mobilities in ordered and disordered phases, with predicted values that lie in the range of ∼1 to 10 cm2 V-1 s-1.

11.
Phys Chem Chem Phys ; 19(1): 231-236, 2016 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-27901136

RESUMEN

The effect of short-range order and dispersivity on charge-transport for organic crystalline semiconductors are important and unresolved questions. This exploration is the first to discern the role of short-range order on charge-transport for crystalline organic semiconductors. A multimode computational approach (including Molecular Dynamics and kinetic Monte Carlo simulations) is employed to understand the hole mobility dispersivity of crystalline organic semiconductors. Crystalline organic solids feature a mesoscale region where dispersive charge-transport dominates; our calculations show a clear transition of charge-mobility from non-dispersive to dispersive. An empirical relationship between the dispersive and non-dispersive transport transition region and ideal simulation box thickness is put forth. The dispersive to non-dispersive transition region occurs when energetic disorder approaches 72 meV. Non-dispersive transport is observed for simulation box sizes greater than 3.7 nm, which corresponds to approximately 12 π-stacked layers in typical π-stacked organic solids. A qualitative relationship is deduced between the variability of measured dispersive hole and variability of computed dispersive hole mobilities and system size. This relationship will guide future charge-transport investigations of condensed-phase organic systems.

12.
J Am Chem Soc ; 137(8): 2856-66, 2015 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-25658235

RESUMEN

Molecular ordering and charge transport have been studied computationally for 22 conjugated oligomers fabricated as crystal or thin-film semiconductors. Molecular dynamics (MD) simulations are employed to equilibrate crystal morphologies at 300 K. The paracrystalline order parameter, g, is calculated to characterize structural order in the materials. Charge-transport dynamics are predicted using kinetic Monte Carlo methods based on a charge-hopping mechanism described by the Marcus theory of electron transfer to calculate charge-transfer rates using the VOTCA package. We introduce an error function to assess the reliability of our computed values to reproduce experimental hole mobilities in both crystalline and thin-film morphologies of the 22 conjugated oligomers. For each of the oligomers, we compute hole mobility with three different theoretical models incorporating increasing measures of disorder: (1) a perfect crystal, based on the experimentally derived crystal structure, with no disorder, (2) an MD-equilibrated structure incorporating thermal disorder into the crystal structure, and (3) model 2 above but also incorporating energetic disorder arising from variations in site energies. For the series of known crystals with long-range order, we find that the perfect crystal model produces hole mobilities giving the best fit to experimental data. For the series of thin-film morphologies with short-range order, we observe that the presence of both thermal and energetic disorder is essential for accurate calculation. We also discuss the interplay between hole mobility and other charge-transport parameters in these morphologies, such as reorganization energy and energetic disorder.

13.
Adv Mater ; : e2403038, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724029

RESUMEN

Perovskite solar cells (PSCs) are developed rapidly in efficiency and stability in recent years, which can compete with silicon solar cells. However, an important obstacle to the commercialization of PSCs is the toxicity of lead ions (Pb2+) from water-soluble perovskites. The entry of free Pb2+ into organisms can cause severe harm to humans, such as blood lead poisoning, organ failure, etc. Therefore, this work reports a "lead isolation-capture" dual detoxification strategy with calcium disodium edetate (EDTA Na-Ca), which can inhibit lead leakage from PSCs under extreme conditions. More importantly, leaked lead exists in a nontoxic aggregation state chelated by EDTA. For the first time, in vivo experiments are conducted in mice to systematically prove that this material has a significant inhibitory effect on the toxicity of perovskites. In addition, this strategy can further enhance device performance, enabling the optimized devices to achieve an impressive power conversion efficiency (PCE) of 25.19%. This innovative strategy is a major breakthrough in the research on the prevention of lead toxicity in PSCs.

14.
Natl Sci Rev ; 11(2): nwad305, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38213530

RESUMEN

The interaction between sites A, B and X with passivation molecules is restricted when the conventional passivation strategy is applied in perovskite (ABX3) photovoltaics. Fortunately, the revolving A-site presents an opportunity to strengthen this interaction by utilizing an external field. Herein, we propose a novel approach to achieving an ordered magnetic dipole moment, which is regulated by a magnetic field via the coupling effect between the chiral passivation molecule and the A-site (formamidine ion) in perovskites. This strategy can increase the molecular interaction energy by approximately four times and ensure a well-ordered molecular arrangement. The quality of the deposited perovskite film is significantly optimized with inhibited nonradiative recombination. It manages to reduce the open-circuit voltage loss of photovoltaic devices to 360 mV and increase the power conversion efficiency to 25.22%. This finding provides a new insight into the exploration of A-sites in perovskites and offers a novel route to improving the device performance of perovskite photovoltaics.

15.
Nat Commun ; 15(1): 2579, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38519495

RESUMEN

Perovskite photovoltaics, typically based on a solution-processed perovskite layer with a film thickness of a few hundred nanometres, have emerged as a leading thin-film photovoltaic technology. Nevertheless, many critical issues pose challenges to its commercialization progress, including industrial compatibility, stability, scalability and reliability. A thicker perovskite film on a scale of micrometres could mitigate these issues. However, the efficiencies of thick-film perovskite cells lag behind those with nanometre film thickness. With the mechanism remaining elusive, the community has long been under the impression that the limiting factor lies in the short carrier lifetime as a result of defects. Here, by constructing a perovskite system with extraordinarily long carrier lifetime, we rule out the restrictions of carrier lifetime on the device performance. Through this, we unveil the critical role of the ignored lattice strain in thick films. Our results provide insights into the factors limiting the performance of thick-film perovskite devices.

16.
Nat Commun ; 15(1): 708, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38267408

RESUMEN

Thermally evaporated C60 is a near-ubiquitous electron transport layer in state-of-the-art p-i-n perovskite-based solar cells. As perovskite photovoltaic technologies are moving toward industrialization, batch-to-batch reproducibility of device performances becomes crucial. Here, we show that commercial as-received (99.75% pure) C60 source materials may coalesce during repeated thermal evaporation processes, jeopardizing such reproducibility. We find that the coalescence is due to oxygen present in the initial source powder and leads to the formation of deep states within the perovskite bandgap, resulting in a systematic decrease in solar cell performance. However, further purification (through sublimation) of the C60 to 99.95% before evaporation is found to hinder coalescence, with the associated solar cell performances being fully reproducible after repeated processing. We verify the universality of this behavior on perovskite/silicon tandem solar cells by demonstrating their open-circuit voltages and fill factors to remain at 1950 mV and 81% respectively, over eight repeated processes using the same sublimed C60 source material. Notably, one of these cells achieved a certified power conversion efficiency of 30.9%. These findings provide insights crucial for the advancement of perovskite photovoltaic technologies towards scaled production with high process yield.

17.
J Phys Chem Lett ; 13(41): 9718-9724, 2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36223529

RESUMEN

Formamidinium lead iodide (FAPbI3) based hybrid perovskite light absorbers have shown remarkable performance in recent years. Since they have unique set of optoelectronic characteristics, they are considered as a good candidate absorber material for future solar cell applications. Until recently, much research had focused on the quantitative analysis of point defects on halide-based perovskite solar cells. Studies show that understanding defect mechanisms in perovskites has a huge impact on efficiency and stability improvements; however, such mechanisms have not been fully understood yet. Here, using first-principles calculations, we investigate the possible defect pair formations in FAPbI3, characterized by their formation energies and charge transitions. We found that while some donor and acceptor point defects are unstable and shallow when they are isolated, they form stable and deep-trap defect pairs and potentially limit the optoelectronic performance. We anticipate that our results will influence future discussions on the impact of defect formation on the performance and stability of perovskite solar cells.

18.
Sci Adv ; 7(46): eabj1799, 2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34757790

RESUMEN

Wide-bandgap (WBG) mixed-halide perovskites as the front cell absorber are accomplishing perovskite-based tandem solar cells with over 29% power conversion efficiency. However, their large voltage deficits limit their ultimate performance. Only a handful of studies probe the fundamental mechanisms underlying the voltage deficits, which remain an unsolved challenge in the field. In this study, we investigate the formation dynamics and defect physics of WBG mixed-halide perovskites in contrast with their corresponding triiodide-based perovskites. Our results show that the inclusion of bromide introduced a halide homogenization process that occurs during the perovskite growth stage from an initial bromide-rich phase toward the final target stoichiometry. We further elucidated a physical model that correlates the role of bromide with the formation dynamics, defect physics, and eventual optoelectronic properties of the film. This work provides a fundamental and unique perspective toward understanding the performance-limiting factors affecting WBG mixed-halide perovskites.

19.
Adv Mater ; 32(11): e1906995, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32017283

RESUMEN

The operational instability of perovskite solar cells (PSCs) is known to mainly originate from the migration of ionic species (or charged defects) under a potential gradient. Compositional engineering of the "A" site cation of the ABX3 perovskite structure has been shown to be an effective route to improve the stability of PSCs. Here, the effect of size-mismatch-induced lattice distortions on the ion migration energetics and operational stability of PSCs is investigated. It is observed that the size mismatch of the mixed "A" site composition films and devices leads to a steric effect to impede the migration pathways of ions to increase the activation energy of ion migration, which is demonstrated through multiple theoretical and experimental evidence. Consequently, the mixed composition devices exhibit significantly improved thermal stability under continuous heating at 85 °C and operational stability under continuous 1 sun illumination, with an extrapolated lifetime of 2011 h, compared to the 222 h of the reference device.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA