Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Inorg Chem ; 61(36): 14455-14461, 2022 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-36040248

RESUMEN

Defective quantum dots (QDs) are the emerging materials for catalysis by virtue of their atomic-scale size, high monodispersity, and ultra-high specific surface area. However, the dispersed nature of QDs fundamentally prohibits the efficient charge transfer in various catalytic processes. Here, we report efficient and robust electrocatalytic oxygen evolution based on defective and highly conductive copper selenide (CuSe) QDs confined in an amorphous carbon matrix with good uniformity (average diameter 4.25 nm) and a high areal density (1.8 × 1012 cm-2). The CuSe QD-confined catalysts with abundant selenide vacancies were prepared by using a pulsed laser deposition system benefitted by high substrate temperature and ultrahigh vacuum growth conditions, as evidenced by electron paramagnetic resonance characterizations. An ultra-low charge transfer resistance (about 7 Ω) determined by electrochemical impedance spectroscopy measurement indicates the efficient charge transfer of CuSe quantum-confined catalysts, which is guaranteed by its high conductivity (with a low resistivity of 2.33 µΩ·m), as revealed by electrical transport measurements. Our work provides a universal design scheme of the dispersed QD-based composite catalysts and demonstrates the CuSe QD-confined catalysts as an efficient and robust electrocatalyst for oxygen evolution reaction.

2.
Chem Commun (Camb) ; 59(99): 14721-14724, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37999946

RESUMEN

Confined semiconducting CuSe quantum dots with abundant Se vacancies are synthesized by pulsed laser deposition with in situ vacuum annealing. With the presence of Se vacancies, the photogenerated charge recombination is suppressed by the self-introduced in-gap trapping states, thus enhancing the photoelectrocatalytic activity under solar illumination.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA