Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Plant Physiol ; 194(4): 2400-2421, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38180123

RESUMEN

Light-induced de-etiolation is an important aspect of seedling photomorphogenesis. GOLDEN2 LIKE (GLK) transcriptional regulators are involved in chloroplast development, but to what extent they participate in photomorphogenesis is not clear. Here, we show that ELONGATED HYPOCOTYL5 (HY5) binds to GLK promoters to activate their expression, and also interacts with GLK proteins in Arabidopsis (Arabidopsis thaliana). The chlorophyll content in the de-etiolating Arabidopsis seedlings of the hy5 glk2 double mutants was lower than that in the hy5 single mutant. GLKs inhibited hypocotyl elongation, and the phenotype could superimpose on the hy5 phenotype. Correspondingly, GLK2 regulated the expression of photosynthesis and cell elongation genes partially independent of HY5. Before exposure to light, DE-ETIOLATED 1 (DET1) affected accumulation of GLK proteins. The enhanced etioplast development and photosystem gene expression observed in the det1 mutant were attenuated in the det1 glk2 double mutant. Our study reveals that GLKs act downstream of HY5, or additive to HY5, and are likely quantitatively adjusted by DET1, to orchestrate multiple developmental traits during the light-induced skotomorphogenesis-to-photomorphogenesis transition in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Regulación de la Expresión Génica de las Plantas , Hipocótilo , Luz , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Plantones/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
Genome Res ; 31(12): 2276-2289, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34503979

RESUMEN

More than 80% of the wheat genome consists of transposable elements (TEs), which act as major drivers of wheat genome evolution. However, their contributions to the regulatory evolution of wheat adaptations remain largely unclear. Here, we created genome-binding maps for 53 transcription factors (TFs) underlying environmental responses by leveraging DAP-seq in Triticum urartu, together with epigenomic profiles. Most TF binding sites (TFBSs) located distally from genes are embedded in TEs, whose functional relevance is supported by purifying selection and active epigenomic features. About 24% of the non-TE TFBSs share significantly high sequence similarity with TE-embedded TFBSs. These non-TE TFBSs have almost no homologous sequences in non-Triticeae species and are potentially derived from Triticeae-specific TEs. The expansion of TE-derived TFBS linked to wheat-specific gene responses, suggesting TEs are an important driving force for regulatory innovations. Altogether, TEs have been significantly and continuously shaping regulatory networks related to wheat genome evolution and adaptation.

3.
Plant Physiol ; 193(1): 792-808, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37300539

RESUMEN

The apoplast of plant leaves, the intercellular space between mesophyll cells, is normally largely filled with air with a minimal amount of liquid water in it, which is essential for key physiological processes such as gas exchange to occur. Phytopathogens exploit virulence factors to induce a water-rich environment, or "water-soaked" area, in the apoplast of the infected leaf tissue to promote disease. We propose that plants evolved a "water soaking" pathway, which normally keeps a nonflooded leaf apoplast for plant growth but is disturbed by microbial pathogens to facilitate infection. Investigation of the "water soaking" pathway and leaf water control mechanisms is a fundamental, yet previously overlooked, aspect of plant physiology. To identify key components in the "water soaking" pathway, we performed a genetic screen to isolate Arabidopsis (Arabidopsis thaliana) severe water soaking (sws) mutants that show liquid water overaccumulation in the leaf under high air humidity, a condition required for visible water soaking. Here, we report the sws1 mutant, which displays rapid water soaking upon high humidity treatment due to a loss-of-function mutation in CURLY LEAF (CLF), encoding a histone methyltransferase in the POLYCOMB REPRESSIVE COMPLEX 2 (PRC2). We found that the sws1 (clf) mutant exhibits enhanced abscisic acid (ABA) levels and stomatal closure, which are indispensable for its water soaking phenotype and mediated by CLF's epigenetic regulation of a group of ABA-associated NAM, ATAF, and CUC (NAC) transcription factor genes, NAC019/055/072. The clf mutant showed weakened immunity, which likely also contributes to the water soaking phenotype. In addition, the clf plant supports a substantially higher level of Pseudomonas syringae pathogen-induced water soaking and bacterial multiplication, in an ABA pathway and NAC019/055/072-dependent manner. Collectively, our study sheds light on an important question in plant biology and demonstrates CLF as a key modulator of leaf liquid water status via epigenetic regulation of the ABA pathway and stomatal movement.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Agua/metabolismo , Epigénesis Genética , Ácido Abscísico/farmacología , Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Estomas de Plantas/metabolismo , Proteínas de Homeodominio/genética
4.
Plant Cell ; 33(4): 865-881, 2021 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-33594406

RESUMEN

Wheat (Triticum aestivum) has a large allohexaploid genome. Subgenome-divergent regulation contributed to genome plasticity and the domestication of polyploid wheat. However, the specificity encoded in the wheat genome determining subgenome-divergent spatio-temporal regulation has been largely unexplored. The considerable size and complexity of the genome are major obstacles to dissecting the regulatory specificity. Here, we compared the epigenomes and transcriptomes from a large set of samples under diverse developmental and environmental conditions. Thousands of distal epigenetic regulatory elements (distal-epiREs) were specifically linked to their target promoters with coordinated epigenomic changes. We revealed that subgenome-divergent activity of homologous regulatory elements is affected by specific epigenetic signatures. Subgenome-divergent epiRE regulation of tissue specificity is associated with dynamic modulation of H3K27me3 mediated by Polycomb complex and demethylases. Furthermore, quantitative epigenomic approaches detected key stress responsive cis- and trans-acting factors validated by DNA Affinity Purification and sequencing, and demonstrated the coordinated interplay between epiRE sequence contexts, epigenetic factors, and transcription factors in regulating subgenome divergent transcriptional responses to external changes. Together, this study provides a wealth of resources for elucidating the epiRE regulomics and subgenome-divergent regulation in hexaploid wheat, and gives new clues for interpreting genetic and epigenetic interplay in regulating the benefits of polyploid wheat.


Asunto(s)
Epigénesis Genética , Secuencias Reguladoras de Ácidos Nucleicos , Estrés Fisiológico/genética , Triticum/genética , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Histonas/genética , Histonas/metabolismo , Lisina/genética , Lisina/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Triticum/fisiología
5.
Plant J ; 101(1): 237-248, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31494994

RESUMEN

High-throughput technology has become a powerful approach for routine plant research. Interpreting the biological significance of high-throughput data has largely focused on the functional characterization of a large gene list or genomic loci that involves the following two aspects: the functions of the genes or loci and how they are regulated as a whole, i.e. searching for the upstream regulators. Traditional platforms for functional annotation largely help resolving the first issue. Addressing the second issue is essential for a global understanding of the regulatory mechanism, but is more challenging, and requires additional high-throughput experimental evidence and a unified statistical framework for data-mining. The rapid accumulation of 'omics data provides a large amount of experimental data. We here present Plant Regulomics, an interface that integrates 19 925 transcriptomic and epigenomic data sets and diverse sources of functional evidence (58 112 terms and 695 414 protein-protein interactions) from six plant species along with the orthologous genes from 56 whole-genome sequenced plant species. All pair-wise transcriptomic comparisons with biological significance within the same study were performed, and all epigenomic data were processed to genomic loci targeted by various factors. These data were well organized to gene modules and loci lists, which were further implemented into the same statistical framework. For any input gene list or genomic loci, Plant Regulomics retrieves the upstream factors, treatments, and experimental/environmental conditions regulating the input from the integrated 'omics data. Additionally, multiple tools and an interactive visualization are available through a user-friendly web interface. Plant Regulomics is available at http://bioinfo.sibs.ac.cn/plant-regulomics.


Asunto(s)
Bases de Datos Genéticas , Genoma de Planta/genética , Plantas/genética , Plantas/metabolismo , Genómica , Programas Informáticos , Transcriptoma/genética
6.
Plant J ; 97(2): 368-377, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30307069

RESUMEN

The phytohormone abscisic acid (ABA)-induced leaf senescence facilitates nutrient reuse and potentially contributes to enhancing plant stress tolerance. However, excessive senescence causes serious reductions in crop yield, and the mechanism by which senescence is finely tuned at different levels is still insufficiently understood. Here, we found that the double mutant of core enzymes of the polycomb repressive complex 2 (PRC2) is hypersensitive to ABA in Arabidopsis thaliana. To elucidate the interplay between ABA and PRC2 at the genome level, we extensively profiled the transcriptomic and epigenomic changes triggered by ABA. We observed that H3K27me3 preferentially targets ABA-induced senescence-associated genes (SAGs). In the double, but not single, mutant of PRC2 enzymes, these SAGs were derepressed and could be more highly induced by ABA compared with the wild-type, suggesting a redundant role for the PRC2 enzymes in negatively regulating ABA-induced senescence. Contrary to the rapid transcriptomic changes triggered by ABA, the reduction of H3K27me3 at these SAGs falls far behind the induction of their expression, indicating that PRC2-mediated H3K27me3 contributed to long-term damping of ABA-induced senescence to prevent an oversensitive response. The findings of this study may serve as a paradigm for a global understanding of the interplay between the rapid effects of a phytohormone such as ABA and the long-term effects of the epigenetic machinery in regulating plant senescence processes and environmental responses.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas Represoras/metabolismo , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Epigénesis Genética , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Complejo Represivo Polycomb 2 , Proteínas Represoras/genética , Estrés Fisiológico , Factores de Tiempo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
Nucleic Acids Res ; 46(18): e107, 2018 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-29931324

RESUMEN

Genetic diversity in plants is remarkably high. Recent whole genome sequencing (WGS) of 67 rice accessions recovered 10,872 novel genes. Comparison of the genetic architecture among divergent populations or between crops and wild relatives is essential for obtaining functional components determining crucial traits. However, many major crops have gigabase-scale genomes, which are not well-suited to WGS. Existing cost-effective sequencing approaches including re-sequencing, exome-sequencing and restriction enzyme-based methods all have difficulty in obtaining long novel genomic sequences from highly divergent population with large genome size. The present study presented a reference-independent core genome targeted sequencing approach, CGT-seq, which employed epigenomic information from both active and repressive epigenetic marks to guide the assembly of the core genome mainly composed of promoter and intragenic regions. This method was relatively easily implemented, and displayed high sensitivity and specificity for capturing the core genome of bread wheat. 95% intragenic and 89% promoter region from wheat were covered by CGT-seq read. We further demonstrated in rice that CGT-seq captured hundreds of novel genes and regulatory sequences from a previously unsequenced ecotype. Together, with specific enrichment and sequencing of regions within and nearby genes, CGT-seq is a time- and resource-effective approach to profiling functionally relevant regions in sequenced and non-sequenced populations with large genomes.


Asunto(s)
Epigénesis Genética/fisiología , Epigenómica/métodos , Especiación Genética , Variación Genética/genética , Tamaño del Genoma/fisiología , Secuenciación Completa del Genoma/métodos , Biología Computacional/métodos , Genoma/genética , Técnicas de Genotipaje/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Anotación de Secuencia Molecular/métodos , Oryza/clasificación , Oryza/genética , Análisis de Secuencia de ADN/métodos , Transcriptoma , Triticum/clasificación , Triticum/genética
8.
J Integr Plant Biol ; 62(12): 1839-1852, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32644250

RESUMEN

The juvenile-to-adult transition in plants involves changes in vegetative growth and plant architecture; the timing of this transition has important implications for agriculture. The microRNA miR156 regulates this transition and shoot maturation in plants. In Arabidopsis thaliana, deposition of histone H3 trimethylation on lysine 27 (H3K27me3, a repressive mark) at the MIR156A/C loci is regulated by Polycomb Repressive Complex 1 (PRC1) or PRC2, depending on the developmental stage. The levels of miR156 progressively decline during shoot maturation. The amount of H3K27me3 at MIR156A/C loci affects miR156 levels; however, whether this epigenetic regulation is conserved remains unclear. Here, we found that in rice (Oryza sativa), the putative PRC1 subunit LIKE HETEROCHROMATIN PROTEIN 1 (OsLHP1), with the miR156-SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) module, affects developmental phase transitions. Loss of OsLHP1 function results in ectopic expression of MIR156B/C/I/E, phenocopy of miR156 overexpression, and reduced H3k27me3 levels at MIR156B/C/I/E. This indicates that OsLHP1 has functionally diverged from Arabidopsis LHP1. Genetic and transcriptome analyses of wild-type, miR156b/c-overexpression, and Oslhp1-2 mutant plants suggest that OsLHP1 acts upstream of miR156 and SPL during the juvenile-to-adult transition. Therefore, modifying the OsLHP1-miR156-SPL pathway may enable alteration of the vegetative period and plant architecture.


Asunto(s)
Arabidopsis/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Oryza/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Cromosómicas no Histona/genética , Epigénesis Genética/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , MicroARNs/genética , MicroARNs/metabolismo , Oryza/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , ARN de Planta/genética , ARN de Planta/metabolismo
9.
Nat Commun ; 14(1): 7465, 2023 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-37978184

RESUMEN

Transposable elements (TEs) comprise ~85% of the common wheat genome, which are highly diverse among subgenomes, possibly contribute to polyploid plasticity, but the causality is only assumed. Here, by integrating data from gene expression cap analysis and epigenome profiling via hidden Markov model in common wheat, we detect a large proportion of enhancer-like elements (ELEs) derived from TEs producing nascent noncoding transcripts, namely ELE-RNAs, which are well indicative of the regulatory activity of ELEs. Quantifying ELE-RNA transcriptome across typical developmental stages reveals that TE-initiated ELE-RNAs are mainly from RLG_famc7.3 specifically expanded in subgenome A. Acquisition of spike-specific transcription factor binding likely confers spike-specific expression of RLG_famc7.3-initiated ELE-RNAs. Knockdown of RLG_famc7.3-initiated ELE-RNAs resulted in global downregulation of spike-specific genes and abnormal spike development. These findings link TE expansion to regulatory specificity and polyploid developmental plasticity, highlighting the functional impact of TE-driven regulatory innovation on polyploid evolution.


Asunto(s)
Elementos Transponibles de ADN , Triticum , Elementos Transponibles de ADN/genética , Triticum/genética , Regulación de la Expresión Génica , Poliploidía , Transcriptoma , ARN
10.
Nat Commun ; 14(1): 7538, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37985755

RESUMEN

Polyploidization is a major driver of genome diversification and environmental adaptation. However, the merger of different genomes may result in genomic conflicts, raising a major question regarding how genetic diversity is interpreted and regulated to enable environmental plasticity. By analyzing the genome-wide binding of 191 trans-factors in allopolyploid wheat, we identified like heterochromatin protein 1 (LHP1) as a master regulator of subgenome-diversified genes. Transcriptomic and epigenomic analyses of LHP1 mutants reveal its role in buffering the expression of subgenome-diversified defense genes by controlling H3K27me3 homeostasis. Stripe rust infection releases latent subgenomic variations by eliminating H3K27me3-related repression. The simultaneous inactivation of LHP1 homoeologs by CRISPR-Cas9 confers robust stripe rust resistance in wheat seedlings. The conditional repression of subgenome-diversified defenses ensures developmental plasticity to external changes, while also promoting neutral-to-non-neutral selection transitions and adaptive evolution. These findings establish an LHP1-mediated buffering system at the intersection of genotypes, environments, and phenotypes in polyploid wheat. Manipulating the epigenetic buffering capacity offers a tool to harness cryptic subgenomic variations for crop improvement.


Asunto(s)
Epigenómica , Triticum , Triticum/genética , Triticum/metabolismo , Histonas/metabolismo , Epigénesis Genética , Genoma de Planta/genética
11.
Plant Commun ; 3(4): 100304, 2022 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-35605195

RESUMEN

Triticeae species, including wheat, barley, and rye, are critical for global food security. Mapping agronomically important genes is crucial for elucidating molecular mechanisms and improving crops. However, Triticeae includes many wild relatives with desirable agronomic traits, and frequent introgressions occurred during Triticeae evolution and domestication. Thus, Triticeae genomes are generally large and complex, making the localization of genes or functional elements that control agronomic traits challenging. Here, we developed Triti-Map, which contains a suite of user-friendly computational packages specifically designed and optimized to overcome the obstacles of gene mapping in Triticeae, as well as a web interface integrating multi-omics data from Triticeae for the efficient mining of genes or functional elements that control particular traits. The Triti-Map pipeline accepts both DNA and RNA bulk-segregated sequencing data as well as traditional QTL data as inputs for locating genes and elucidating their functions. We illustrate the usage of Triti-Map with a combination of bulk-segregated ChIP-seq data to detect a wheat disease-resistance gene with its promoter sequence that is absent from the reference genome and clarify its evolutionary process. We hope that Triti-Map will facilitate gene isolation and accelerate Triticeae breeding.


Asunto(s)
Evolución Molecular , Genoma de Planta , Fitomejoramiento , Poaceae/genética , Triticum/genética
12.
Nat Commun ; 13(1): 6940, 2022 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-36376315

RESUMEN

The success of common wheat as a global staple crop was largely attributed to its genomic diversity and redundancy due to the merge of different genomes, giving rise to the major question how subgenome-divergent and -convergent transcription is mediated and harmonized in a single cell. Here, we create a catalog of genome-wide transcription factor-binding sites (TFBSs) to assemble a common wheat regulatory network on an unprecedented scale. A significant proportion of subgenome-divergent TFBSs are derived from differential expansions of particular transposable elements (TEs) in diploid progenitors, which contribute to subgenome-divergent transcription. Whereas subgenome-convergent transcription is associated with balanced TF binding at loci derived from TE expansions before diploid divergence. These TFBSs have retained in parallel during evolution of each diploid, despite extensive unbalanced turnover of the flanking TEs. Thus, the differential evolutionary selection of paleo- and neo-TEs contribute to subgenome-convergent and -divergent regulation in common wheat, highlighting the influence of TE repertory plasticity on transcriptional plasticity in polyploid.


Asunto(s)
Elementos Transponibles de ADN , Triticum , Elementos Transponibles de ADN/genética , Triticum/genética , Genoma de Planta/genética , Poliploidía , Diploidia , Evolución Molecular
13.
aBIOTECH ; 2(4): 357-364, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36311809

RESUMEN

A chromosome-level genome assembly of the bread wheat variety Chinese Spring (CS) has recently been published. Genome-wide identification of regulatory elements (REs) responsible for regulating gene activity is key to further mechanistic studies. Because epigenetic activity can reflect RE activity, defining chromatin states based on epigenomic features is an effective way to detect REs. Here, we present the web-based platform Chinese Spring chromatin state (CSCS), which provides CS chromatin signature information. CSCS includes 15 recently published epigenomic data sets including open chromatin and major chromatin marks, which are further partitioned into 15 distinct chromatin states. CSCS curates detailed information about these chromatin states, with trained self-organization mapping (SOM) for segments in all chromatin states and JBrowse visualization for genomic regions or genes. Motif analysis for genomic regions or genes, GO analysis for genes and SOM analysis for new epigenomic data sets are also integrated into CSCS. In summary, the CSCS database contains the combinatorial patterns of chromatin signatures in wheat and facilitates the detection of functional elements and further clarification of regulatory activities. We illustrate how CSCS enables biological insights using one example, demonstrating that CSCS is a highly useful resource for intensive data mining. CSCS is available at http://bioinfo.cemps.ac.cn/CSCS/. Supplementary Information: The online version contains supplementary material available at 10.1007/s42994-021-00048-z.

14.
Genome Biol ; 20(1): 139, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31307500

RESUMEN

BACKGROUND: Bread wheat is an allohexaploid species with a 16-Gb genome that has large intergenic regions, which presents a big challenge for pinpointing regulatory elements and further revealing the transcriptional regulatory mechanisms. Chromatin profiling to characterize the combinatorial patterns of chromatin signatures is a powerful means to detect functional elements and clarify regulatory activities in human studies. RESULTS: In the present study, through comprehensive analyses of the open chromatin, DNA methylome, seven major chromatin marks, and transcriptomic data generated for seedlings of allohexaploid wheat, we detected distinct chromatin architectural features surrounding various functional elements, including genes, promoters, enhancer-like elements, and transposons. Thousands of new genic regions and cis-regulatory elements are identified based on the combinatorial pattern of chromatin features. Roughly 1.5% of the genome encodes a subset of active regulatory elements, including promoters and enhancer-like elements, which are characterized by a high degree of chromatin openness and histone acetylation, an abundance of CpG islands, and low DNA methylation levels. A comparison across sub-genomes reveals that evolutionary selection on gene regulation is targeted at the sequence and chromatin feature levels. The divergent enrichment of cis-elements between enhancer-like sequences and promoters implies these functional elements are targeted by different transcription factors. CONCLUSIONS: We herein present a systematic epigenomic map for the annotation of cis-regulatory elements in the bread wheat genome, which provides new insights into the connections between chromatin modifications and cis-regulatory activities in allohexaploid wheat.


Asunto(s)
Ensamble y Desensamble de Cromatina , Metilación de ADN , Código de Histonas , Elementos Reguladores de la Transcripción , Triticum/genética , Evolución Biológica , Epigenómica , Genoma de Planta , Plantones/metabolismo , Triticum/metabolismo
16.
Rice (N Y) ; 9(1): 20, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27164981

RESUMEN

BACKGROUND: Recent studies have shown that C4-like photosynthetic pathways partly reside in photosynthetic cells surrounding the vascular system of C3 dicots. However, it is still unclear whether this is the case in C3 monocots, especially at the molecular level. RESULTS: In order to fill this gap, we investigated several characteristics required for C4 photosynthesis, including C4 pathway enzymes, cyclic/non-cyclic photophosphorylation rates, the levels and assembly state of photosynthetic machineries, in the mid-veins of C3 monocots rice with leaf laminae used as controls. The signature of photosystem photochemistry was also recorded via non-invasive chlorophyll a fluorescence and reflectance changes at 820 nm in vivo. Our results showed that rice mid-veins were photosynthetically active with higher levels of three C4 decarboxylases. Meanwhile, the linear electron transport chain was blocked in mid-veins due to the selective loss of dysfunctional photosystem II subunits. However, photosystem I was sufficient to support cyclic electron flow in mid-veins, reminiscent of the bundle sheath in C4 plants. CONCLUSIONS: The photosynthetic attributes required for C4 photosynthesis were identified for the first time in the monocotyledon model crop rice, suggesting that this is likely a general innate characteristic of C3 plants which might be preconditioned for the C4 pathway evolution. Understanding these attributes would provide a base for improved strategies for engineering C4 photosynthetic pathways into rice.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA