Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Genes Dev ; 29(5): 526-37, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25691092

RESUMEN

RNAi is a conserved genome defense mechanism in eukaryotes that protects against deleterious effects of transposons and viral invasion. Repetitive DNA loci are a major source for the production of eukaryotic small RNAs, but how these small RNAs are produced is not clear. Quelling in Neurospora is one of the first known RNAi-related phenomena and is triggered by the presence of multiple copies of transgenes. Here we showed that DNA tandem repeats and double-strand breaks are necessary and, when both are present, sufficient to trigger gene silencing and siRNA production. Introduction of a site-specific double-strand break or DNA fragile site resulted in homologous recombination of repetitive sequences, which is required for gene silencing. In addition to siRNA production, the quelling pathway also maintains tandem repeats by regulating homologous recombination. Our study identified the mechanistic trigger for siRNA production from repetitive DNA and established a role for siRNA in maintaining genome stability.


Asunto(s)
ADN de Hongos/genética , Neurospora/genética , ARN Interferente Pequeño/biosíntesis , Secuencias Repetitivas de Ácidos Nucleicos/genética , Roturas del ADN de Doble Cadena , Reparación del ADN/genética , Silenciador del Gen , Genoma Fúngico/genética , Mutación , ARN Interferente Pequeño/genética
2.
PLoS Genet ; 15(3): e1007857, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30870432

RESUMEN

Schwann cells are integral components of vertebrate neuromuscular synapses; in their absence, pre-synaptic nerve terminals withdraw from post-synaptic muscles, leading to muscle denervation and synapse loss at the developing neuromuscular junction (NMJ). Here, we report a rescue of muscle denervation and neuromuscular synapses loss in type III Neuregulin 1 mutant mice (CRD-Nrg1-/-), which lack Schwann cells. We found that muscle denervation and neuromuscular synapse loss were prevented in CRD-Nrg1-/-mice when presynaptic activity was blocked by ablating a specific gene, such as Snap25 (synaptosomal-associated 25 kDa protein) or Chat (choline acetyltransferase). Further, these effects were mediated by a pathway that requires postsynaptic acetylcholine receptors (AChRs), because ablating Chrna1 (acetylcholine receptor α1 subunit), which encodes muscle-specific AChRs in CRD-Nrg1-/-mice also rescued muscle denervation. Moreover, genetically ablating muscle dihydropyridine receptor (DHPR) ß1 subunit (Cacnb1) or ryanodine receptor 1 (Ryr1) also rescued muscle denervation and neuromuscular synapse loss in CRD-Nrg1-/-mice. Thus, these genetic manipulations follow a pathway-from presynaptic to postsynaptic, and, ultimately to muscle activity mediated by DHPRs and Ryr1. Importantly, electrophysiological analyses reveal robust synaptic activity in the rescued, Schwann-cell deficient NMJs in CRD-Nrg1-/-Cacnb1-/-or CRD-Nrg1-/-Ryr1-/-mutant mice. Thus, a blockade of synaptic activity, although sufficient, is not necessary to preserve NMJs that lack Schwann cells. Instead, a blockade of muscle activity mediated by DHRPs and Ryr1 is both necessary and sufficient for preserving NMJs that lack Schwann cells. These findings suggest that muscle activity mediated by DHPRs/Ryr1 may destabilize developing NMJs and that Schwann cells play crucial roles in counteracting such a destabilizing activity to preserve neuromuscular synapses during development.


Asunto(s)
Canales de Calcio Tipo L/genética , Neurregulina-1/genética , Canal Liberador de Calcio Receptor de Rianodina/genética , Sinapsis/genética , Animales , Axones/metabolismo , Electrofisiología , Humanos , Ratones , Neuronas Motoras/metabolismo , Desnervación Muscular , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiología , Regeneración Nerviosa/genética , Unión Neuromuscular/genética , Terminales Presinápticos/metabolismo , Receptores Nicotínicos/genética , Células de Schwann/metabolismo , Sinapsis/fisiología , Proteína 25 Asociada a Sinaptosomas/genética
3.
Nature ; 514(7524): 650-3, 2014 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-25132551

RESUMEN

Eukaryotic circadian oscillators consist of negative feedback loops that generate endogenous rhythmicities. Natural antisense RNAs are found in a wide range of eukaryotic organisms. Nevertheless, the physiological importance and mode of action of most antisense RNAs are not clear. frequency (frq) encodes a component of the Neurospora core circadian negative feedback loop, which was thought to generate sustained rhythmicity. Transcription of qrf, the long non-coding frq antisense RNA, is induced by light, and its level oscillates in antiphase to frq sense RNA. Here we show that qrf transcription is regulated by both light-dependent and light-independent mechanisms. Light-dependent qrf transcription represses frq expression and regulates clock resetting. Light-independent qrf expression, on the other hand, is required for circadian rhythmicity. frq transcription also inhibits qrf expression and drives the antiphasic rhythm of qrf transcripts. The mutual inhibition of frq and qrf transcription thus forms a double negative feedback loop that is interlocked with the core feedback loop. Genetic and mathematical modelling analyses indicate that such an arrangement is required for robust and sustained circadian rhythmicity. Moreover, our results suggest that antisense transcription inhibits sense expression by mediating chromatin modifications and premature termination of transcription. Taken together, our results establish antisense transcription as an essential feature in a circadian system and shed light on the importance and mechanism of antisense action.


Asunto(s)
Relojes Circadianos/genética , Neurospora crassa/genética , ARN sin Sentido/genética , Transcripción Genética/genética , Cromatina/genética , Cromatina/metabolismo , Relojes Circadianos/fisiología , Ritmo Circadiano/genética , Ritmo Circadiano/fisiología , Ritmo Circadiano/efectos de la radiación , Retroalimentación Fisiológica , Regulación Fúngica de la Expresión Génica/genética , Regulación Fúngica de la Expresión Génica/efectos de la radiación , Silenciador del Gen , Genes Fúngicos/genética , Luz , Neurospora crassa/fisiología , Neurospora crassa/efectos de la radiación , ARN Polimerasa II/metabolismo , ARN no Traducido/genética , Terminación de la Transcripción Genética/efectos de la radiación , Transcripción Genética/efectos de la radiación
4.
Ann Neurol ; 81(4): 597-603, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28253535

RESUMEN

We report 2 families with undiagnosed recessive presynaptic congenital myasthenic syndrome (CMS). Whole exome or genome sequencing identified segregating homozygous variants in VAMP1: c.51_64delAGGTGGGGGTCCCC in a Kuwaiti family and c.146G>C in an Israeli family. VAMP1 is crucial for vesicle fusion at presynaptic neuromuscular junction (NMJ). Electrodiagnostic examination showed severely low compound muscle action potentials and presynaptic impairment. We assessed the effect of the nonsense mutation on mRNA levels and evaluated the NMJ transmission in VAMP1lew/lew mice, observing neurophysiological features of presynaptic impairment, similar to the patients. Taken together, our findings highlight VAMP1 homozygous mutations as a cause of presynaptic CMS. Ann Neurol 2017;81:597-603.


Asunto(s)
Síndromes Miasténicos Congénitos/genética , Síndromes Miasténicos Congénitos/fisiopatología , Unión Neuromuscular/fisiopatología , Proteína 1 de Membrana Asociada a Vesículas/genética , Animales , Preescolar , Codón sin Sentido , Consanguinidad , Modelos Animales de Enfermedad , Femenino , Homocigoto , Humanos , Israel , Kuwait , Masculino , Ratones , Ratones Transgénicos , Linaje
5.
PLoS Genet ; 9(1): e1003227, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23349642

RESUMEN

Most plant and animal microRNAs (miRNAs) are transcribed by RNA polymerase II. We previously discovered miRNA-like small RNAs (milRNAs) in the filamentous fungus Neurospora crassa and uncovered at least four different pathways for milRNA production. To understand the evolutionary origin of milRNAs, we determined the roles of polymerases II and III (Pol II and Pol III) in milRNA transcription. Our results show that Pol III is responsible for the transcription of the major milRNAs produced in this organism. The inhibition of Pol III activity by an inhibitor or by gene silencing abolishes the production of most abundant milRNAs and pri-milRNAs. In addition, Pol III associates with these milRNA producing loci. Even though silencing of Pol II does not affect the synthesis of the most abundant milRNAs, Pol II or both Pol II and Pol III are associated with some milRNA-producing loci, suggesting a regulatory interaction between the two polymerases for some milRNA transcription. Furthermore, we show that one of the Pol III-transcribed milRNAs is derived from a tRNA precursor, and its biogenesis requires RNase Z, which cleaves the tRNA moiety to generate pre-milRNA. Our study identifies the transcriptional machinery responsible for the synthesis of fungal milRNAs and sheds light on the evolutionary origin of eukaryotic small RNAs.


Asunto(s)
MicroARNs , Neurospora crassa , ARN Polimerasa III , ARN Polimerasa II , ARN de Hongos , Secuencia de Bases , Endorribonucleasas/genética , Regulación Fúngica de la Expresión Génica , Silenciador del Gen , MicroARNs/biosíntesis , MicroARNs/genética , MicroARNs/metabolismo , Datos de Secuencia Molecular , Neurospora crassa/enzimología , Neurospora crassa/genética , Regiones Promotoras Genéticas , ARN Polimerasa II/antagonistas & inhibidores , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , ARN Polimerasa III/genética , ARN Polimerasa III/metabolismo , ARN de Hongos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA