Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Cell ; 184(19): 4919-4938.e22, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34506722

RESUMEN

Replacing or editing disease-causing mutations holds great promise for treating many human diseases. Yet, delivering therapeutic genetic modifiers to specific cells in vivo has been challenging, particularly in large, anatomically distributed tissues such as skeletal muscle. Here, we establish an in vivo strategy to evolve and stringently select capsid variants of adeno-associated viruses (AAVs) that enable potent delivery to desired tissues. Using this method, we identify a class of RGD motif-containing capsids that transduces muscle with superior efficiency and selectivity after intravenous injection in mice and non-human primates. We demonstrate substantially enhanced potency and therapeutic efficacy of these engineered vectors compared to naturally occurring AAV capsids in two mouse models of genetic muscle disease. The top capsid variants from our selection approach show conserved potency for delivery across a variety of inbred mouse strains, and in cynomolgus macaques and human primary myotubes, with transduction dependent on target cell expressed integrin heterodimers.


Asunto(s)
Cápside/metabolismo , Dependovirus/metabolismo , Evolución Molecular Dirigida , Técnicas de Transferencia de Gen , Músculo Esquelético/metabolismo , Secuencia de Aminoácidos , Animales , Cápside/química , Células Cultivadas , Modelos Animales de Enfermedad , Células HEK293 , Humanos , Integrinas/metabolismo , Macaca fascicularis , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Fibras Musculares Esqueléticas/metabolismo , Distrofia Muscular de Duchenne/patología , Distrofia Muscular de Duchenne/terapia , Miopatías Estructurales Congénitas/patología , Miopatías Estructurales Congénitas/terapia , Multimerización de Proteína , Proteínas Tirosina Fosfatasas no Receptoras/genética , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Proteínas Tirosina Fosfatasas no Receptoras/uso terapéutico , ARN Guía de Kinetoplastida/metabolismo , Recombinación Genética/genética , Especificidad de la Especie , Transgenes
2.
Cell ; 178(4): 779-794, 2019 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-31398336

RESUMEN

Metagenomic sequencing is revolutionizing the detection and characterization of microbial species, and a wide variety of software tools are available to perform taxonomic classification of these data. The fast pace of development of these tools and the complexity of metagenomic data make it important that researchers are able to benchmark their performance. Here, we review current approaches for metagenomic analysis and evaluate the performance of 20 metagenomic classifiers using simulated and experimental datasets. We describe the key metrics used to assess performance, offer a framework for the comparison of additional classifiers, and discuss the future of metagenomic data analysis.


Asunto(s)
Bacterias/clasificación , Benchmarking/métodos , Hongos/clasificación , Metagenoma/genética , Metagenómica/métodos , Virus/clasificación , Bacterias/genética , Bases de Datos Genéticas , Hongos/genética , Filogenia , Reacción en Cadena de la Polimerasa , Análisis de Secuencia de ADN , Programas Informáticos , Virus/genética
3.
Nature ; 582(7811): 277-282, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32349121

RESUMEN

The great majority of globally circulating pathogens go undetected, undermining patient care and hindering outbreak preparedness and response. To enable routine surveillance and comprehensive diagnostic applications, there is a need for detection technologies that can scale to test many samples1-3 while simultaneously testing for many pathogens4-6. Here, we develop Combinatorial Arrayed Reactions for Multiplexed Evaluation of Nucleic acids (CARMEN), a platform for scalable, multiplexed pathogen detection. In the CARMEN platform, nanolitre droplets containing CRISPR-based nucleic acid detection reagents7 self-organize in a microwell array8 to pair with droplets of amplified samples, testing each sample against each CRISPR RNA (crRNA) in replicate. The combination of CARMEN and Cas13 detection (CARMEN-Cas13) enables robust testing of more than 4,500 crRNA-target pairs on a single array. Using CARMEN-Cas13, we developed a multiplexed assay that simultaneously differentiates all 169 human-associated viruses with at least 10 published genome sequences and rapidly incorporated an additional crRNA to detect the causative agent of the 2020 COVID-19 pandemic. CARMEN-Cas13 further enables comprehensive subtyping of influenza A strains and multiplexed identification of dozens of HIV drug-resistance mutations. The intrinsic multiplexing and throughput capabilities of CARMEN make it practical to scale, as miniaturization decreases reagent cost per test by more than 300-fold. Scalable, highly multiplexed CRISPR-based nucleic acid detection shifts diagnostic and surveillance efforts from targeted testing of high-priority samples to comprehensive testing of large sample sets, greatly benefiting patients and public health9-11.


Asunto(s)
Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Técnicas Analíticas Microfluídicas/métodos , Virosis/diagnóstico , Virosis/virología , Animales , Betacoronavirus/genética , Betacoronavirus/aislamiento & purificación , Farmacorresistencia Viral/genética , Genoma Viral/genética , VIH/clasificación , VIH/genética , VIH/aislamiento & purificación , Humanos , Virus de la Influenza A/clasificación , Virus de la Influenza A/genética , Virus de la Influenza A/aislamiento & purificación , Técnicas Analíticas Microfluídicas/instrumentación , ARN Guía de Kinetoplastida/genética , SARS-CoV-2 , Sensibilidad y Especificidad
4.
Nature ; 546(7658): 411-415, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28538734

RESUMEN

Although the recent Zika virus (ZIKV) epidemic in the Americas and its link to birth defects have attracted a great deal of attention, much remains unknown about ZIKV disease epidemiology and ZIKV evolution, in part owing to a lack of genomic data. Here we address this gap in knowledge by using multiple sequencing approaches to generate 110 ZIKV genomes from clinical and mosquito samples from 10 countries and territories, greatly expanding the observed viral genetic diversity from this outbreak. We analysed the timing and patterns of introductions into distinct geographic regions; our phylogenetic evidence suggests rapid expansion of the outbreak in Brazil and multiple introductions of outbreak strains into Puerto Rico, Honduras, Colombia, other Caribbean islands, and the continental United States. We find that ZIKV circulated undetected in multiple regions for many months before the first locally transmitted cases were confirmed, highlighting the importance of surveillance of viral infections. We identify mutations with possible functional implications for ZIKV biology and pathogenesis, as well as those that might be relevant to the effectiveness of diagnostic tests.


Asunto(s)
Filogenia , Infección por el Virus Zika/transmisión , Infección por el Virus Zika/virología , Virus Zika/genética , Virus Zika/aislamiento & purificación , Animales , Brasil/epidemiología , Colombia/epidemiología , Culicidae/virología , Brotes de Enfermedades/estadística & datos numéricos , Genoma Viral/genética , Mapeo Geográfico , Honduras/epidemiología , Humanos , Metagenoma/genética , Epidemiología Molecular , Mosquitos Vectores/virología , Mutación , Vigilancia en Salud Pública , Puerto Rico/epidemiología , Estados Unidos/epidemiología , Virus Zika/clasificación , Virus Zika/patogenicidad , Infección por el Virus Zika/diagnóstico , Infección por el Virus Zika/epidemiología
5.
N Engl J Med ; 379(18): 1745-1753, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30332564

RESUMEN

During 2018, an unusual increase in Lassa fever cases occurred in Nigeria, raising concern among national and international public health agencies. We analyzed 220 Lassa virus genomes from infected patients, including 129 from the 2017-2018 transmission season, to understand the viral populations underpinning the increase. A total of 14 initial genomes from 2018 samples were generated at Redeemer's University in Nigeria, and the findings were shared with the Nigerian Center for Disease Control in real time. We found that the increase in cases was not attributable to a particular Lassa virus strain or sustained by human-to-human transmission. Instead, the data were consistent with ongoing cross-species transmission from local rodent populations. Phylogenetic analysis also revealed extensive viral diversity that was structured according to geography, with major rivers appearing to act as barriers to migration of the rodent reservoir.


Asunto(s)
Genoma Viral , Fiebre de Lassa/virología , Virus Lassa/genética , ARN Viral/análisis , Adolescente , Adulto , Animales , Teorema de Bayes , Reservorios de Enfermedades , Femenino , Variación Genética , Humanos , Fiebre de Lassa/epidemiología , Fiebre de Lassa/transmisión , Masculino , Cadenas de Markov , Persona de Mediana Edad , Nigeria/epidemiología , Filogenia , Filogeografía , Roedores , Análisis de Secuencia de ARN , Zoonosis/transmisión
6.
J Virol ; 93(2)2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30381486

RESUMEN

Heterosexual transmission of human immunodeficiency virus type 1 (HIV-1) is associated with a significant bottleneck in the viral quasispecies population, yet the timing of that bottleneck is poorly understood. We characterized HIV-1 diversity in the blood and female genital tract (FGT) within 2 weeks after detection of infection in three women enrolled in a unique prospective cohort in South Africa. We assembled full-length HIV-1 genomes from matched cervicovaginal lavage (CVL) samples and plasma. Deep sequencing allowed us to identify intrahost single-nucleotide variants (iSNVs) and to characterize within-sample HIV-1 diversity. Our results demonstrated very little HIV-1 diversity in the FGT and plasma by the time viremia was detectable. Within each subject, the consensus HIV-1 sequences were identical in plasma and CVL fluid. No iSNV was present at >6% frequency. One subject had 77 low-frequency iSNVs across both CVL fluid and plasma, another subject had 14 iSNVs in only CVL fluid from the earliest time point, and the third subject had no iSNVs in CVL fluid or plasma. Overall, the small amount of diversity that we detected was greater in the FGT than in plasma and declined over the first 2 weeks after viremia was detectable, compatible with a very early HIV-1 transmission bottleneck. To our knowledge, our study represents the earliest genomic analysis of HIV-1 in the FGT after transmission. Further, the use of metagenomic sequencing allowed us to characterize other organisms in the FGT, including commensal bacteria and sexually transmitted infections, highlighting the utility of the method to sequence both HIV-1 and its metagenomic environment.IMPORTANCE Due to error-prone replication, HIV-1 generates a diverse population of viruses within a chronically infected individual. When HIV-1 is transmitted to a new individual, one or a few viruses establish the new infection, leading to a genetic bottleneck in the virus population. Understanding the timing and nature of this bottleneck may provide insight into HIV-1 vaccine design and other preventative strategies. We examined the HIV-1 population in three women enrolled in a unique prospective cohort in South Africa who were followed closely during the earliest stages of HIV-1 infection. We found very little HIV-1 diversity in the blood and female genital tract during the first 2 weeks after virus was detected in the bloodstream. These results are compatible with a very early HIV-1 population bottleneck, suggesting the need to study the HIV-1 population in the female genital tract before virus is detectable in the bloodstream.


Asunto(s)
Infecciones por VIH/sangre , VIH-1/genética , Metagenómica/métodos , Análisis de Secuencia de ARN/métodos , Vagina/virología , Femenino , Infecciones por VIH/virología , VIH-1/clasificación , Humanos , Filogenia , Estudios Prospectivos , Cuasiespecies , ARN Viral/genética , Sudáfrica , Adulto Joven
7.
Biomed Microdevices ; 18(4): 71, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27444649

RESUMEN

We demonstrate an acoustic platform for micro-vortexing in disposable polymer microfluidic chips with small-volume (20 µl) reaction chambers. The described method is demonstrated for a variety of standard vortexing functions, including mixing of fluids, re-suspension of a pellet of magnetic beads collected by a magnet placed on the chip, and lysis of cells for DNA extraction. The device is based on a modified Langevin-type ultrasonic transducer with an exponential horn for efficient coupling into the microfluidic chip, which is actuated by a low-cost fixed-frequency electronic driver board. The transducer is optimized by numerical modelling, and different demonstrated vortexing functions are realized by actuating the transducer for varying times; from fractions of a second for fluid mixing, to half a minute for cell lysis and DNA extraction. The platform can be operated during 1 min below physiological temperatures with the help of a PC fan, a Peltier element and an aluminum heat sink acting as the chip holder. As a proof of principle for sample preparation applications, we demonstrate on-chip cell lysis and DNA extraction within 25 s. The method is of interest for automating and chip-integrating sample preparation procedures in various biological assays.


Asunto(s)
Acústica , Técnicas Analíticas Microfluídicas , Microfluídica/instrumentación , Células A549 , Humanos , Campos Magnéticos , Polímeros/química
8.
Med ; 4(1): 31-50.e8, 2023 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-36417917

RESUMEN

BACKGROUND: Adeno-associated virus (AAV) vectors are a promising vehicle for noninvasive gene delivery to the central nervous system via intravenous infusion. However, naturally occurring serotypes have a limited ability to transduce the brain, and translating engineered capsids from mice to nonhuman primates has proved challenging. METHODS: In this study, we use an mRNA-based directed-evolution strategy in multiple strains of mice as well as a de novo selection in cynomolgus macaques to identify families of engineered vectors with increased potency in the brain and decreased tropism for the liver. FINDINGS: We compare the transgene expression capabilities of several engineered vectors and show that while some of our novel macaque-derived variants significantly outperform AAV9 in transducing the macaque brain following systemic administration, mouse-derived variants-both those identified in this study and those reported by other groups-universally do not. CONCLUSIONS: Together, the results of this work introduce a class of primate-derived engineered AAV capsids with increased therapeutic potential and highlight the critical need for using appropriate animal models to both identify and evaluate novel AAVs intended for delivery to the human central nervous system. FUNDING: This work was funded primarily through an anonymous philanthropic gift to the P.C.S. lab at the Broad Institute of MIT and Harvard and by a grant from the Howard Hughes Medical Institute to P.C.S.


Asunto(s)
Cápside , Macaca , Humanos , Animales , Ratones , Cápside/metabolismo , Macaca/genética , Vectores Genéticos/genética , Sistema Nervioso Central/metabolismo , Transgenes , Primates/genética , Dependovirus/genética , Dependovirus/metabolismo
9.
mBio ; 12(4): e0114321, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34465023

RESUMEN

Meningitis and encephalitis are leading causes of central nervous system (CNS) disease and often result in severe neurological compromise or death. Traditional diagnostic workflows largely rely on pathogen-specific tests, sometimes over days to weeks, whereas metagenomic next-generation sequencing (mNGS) profiles all nucleic acid in a sample. In this single-center, prospective study, 68 hospitalized patients with known (n = 44) or suspected (n = 24) CNS infections underwent mNGS from RNA and DNA to identify potential pathogens and also targeted sequencing of viruses using hybrid capture. Using a computational metagenomic classification pipeline based on KrakenUniq and BLAST, we detected pathogen nucleic acid in cerebrospinal fluid (CSF) from 22 subjects, 3 of whom had no clinical diagnosis by routine workup. Among subjects diagnosed with infection by serology and/or peripheral samples, we demonstrated the utility of mNGS to detect pathogen nucleic acid in CSF, importantly for the Ixodes scapularis tick-borne pathogens Powassan virus, Borrelia burgdorferi, and Anaplasma phagocytophilum. We also evaluated two methods to enhance the detection of viral nucleic acid, hybrid capture and methylated DNA depletion. Hybrid capture nearly universally increased viral read recovery. Although results for methylated DNA depletion were mixed, it allowed the detection of varicella-zoster virus DNA in two samples that were negative by standard mNGS. Overall, mNGS is a promising approach that can test for multiple pathogens simultaneously, with efficacy similar to that of pathogen-specific tests, and can uncover geographically relevant infectious CNS disease, such as tick-borne infections in New England. With further laboratory and computational enhancements, mNGS may become a mainstay of workup for encephalitis and meningitis. IMPORTANCE Meningitis and encephalitis are leading global causes of central nervous system (CNS) disability and mortality. Current diagnostic workflows remain inefficient, requiring costly pathogen-specific assays and sometimes invasive surgical procedures. Despite intensive diagnostic efforts, 40 to 60% of people with meningitis or encephalitis have no clear cause of CNS disease identified. As diagnostic uncertainty often leads to costly inappropriate therapies, the need for novel pathogen detection methods is paramount. Metagenomic next-generation sequencing (mNGS) offers the unique opportunity to circumvent these challenges using unbiased laboratory and computational methods. Here, we performed comprehensive mNGS from 68 prospectively enrolled patients with known (n = 44) or suspected (n = 24) CNS viral infection from a single center in New England and evaluated enhanced methods to improve the detection of CNS pathogens, including those not traditionally identified in the CNS by nucleic acid detection. Overall, our work helps elucidate how mNGS can become integrated into the diagnostic toolkit for CNS infections.


Asunto(s)
Enfermedades Virales del Sistema Nervioso Central/diagnóstico , Encefalitis/virología , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Meningitis/virología , Metagenoma , Metagenómica/métodos , Virus/genética , Adulto , Anciano , Enfermedades Virales del Sistema Nervioso Central/líquido cefalorraquídeo , Enfermedades Virales del Sistema Nervioso Central/virología , Encefalitis/líquido cefalorraquídeo , Encefalitis/diagnóstico , Femenino , Humanos , Masculino , Meningitis/líquido cefalorraquídeo , Meningitis/diagnóstico , Persona de Mediana Edad , Estudios Prospectivos , Virus/clasificación , Virus/aislamiento & purificación , Virus/patogenicidad
10.
Nanoscale ; 4(4): 1321-7, 2012 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-22228399

RESUMEN

It has recently been shown that electronic transport in zigzag graphene nanoribbons becomes spin-polarized upon application of an electric field across the nanoribbon width. However, the electric fields required to experimentally induce this magnetic state are typically large and difficult to apply in practice. Here, using both first-principles density functional theory (DFT) and time-dependent DFT, we show that a new spiropyran-based, mechanochromic polymer noncovalently deposited on a nanoribbon can collectively function as a dual opto-mechanical switch for modulating its own spin-polarization. These calculations demonstrate that upon mechanical stress or photoabsorption, the spiropyran chromophore isomerizes from a closed-configuration ground-state to a zwitterionic excited-state, resulting in a large change in dipole moment that alters the electrostatic environment of the nanoribbon. We show that the electronic spin-distribution in the nanoribbon-spiropyran hybrid material can be reversibly modulated via noninvasive optical and mechanical stimuli without the need for large external electric fields. Our results suggest that the reversible spintronic properties inherent to the nanoribbon-spiropyran material allow the possibility of using this hybrid structure as a resettable, molecular-logic quantum sensor where opto-mechanical stimuli are used as inputs and the spin-polarized current induced in the nanoribbon substrate is the measured output.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA