Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Pestic Biochem Physiol ; 201: 105862, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38685239

RESUMEN

Phomopsis longicolla, a causal agent of soybean root rot, stem blight, seed decay, pod and stem canker, which seriously affects the yield and quality of soybean production worldwide. The phenylpyrrole fungicide fludioxonil exhibits a broad spectrum and high activity against phytopathogenic fungi. In this study, the baseline sensitivity of 100 P. longicolla isolates collected from the main soybean production areas of China to fludioxonil were determined. The result showed that the EC50 values of all the P. longicolla isolates ranged from 0.013 to 0.035 µg/ml. Furthermore, 12 fludioxonil-resistance (FluR) mutants of P. longicolla were generated from 6 fludioxonil-sensitive (FluS) isolates. and the resistance factors (RF) of 12 FluR mutants were >3500. Sequence alignment showed that multiple mutation types were found in PlOS1, PlOS4 or/and PlOS5 of FluR mutants. All the FluR mutants exhibited fitness penalty in mycelial growth, conidiation, virulence and osmo-adaptation. Under fludioxonil or NaCl treatment condition, the glycerol accumulation was significantly increased in FluS isolates, but was slightly increased in FluR mutants, and the phosphorylation level of most FluR mutants was significantly decreased when compared to the FluS isolates. Additionally, positive cross-resistance was observed between fludioxonil and procymidone but not fludioxonil and pydiflumetofen, pyraclostrobin or fluazinam. This is first reported that the baseline sensitivity of P. longicolla to fludioxonil, as well as the biological and molecular characterizations of P. longicolla FluR mutants to fludioxonil. These results can provide scientific directions for controlling soybean diseases caused by P. longicolla using fludioxonil.


Asunto(s)
Ascomicetos , Dioxoles , Farmacorresistencia Fúngica , Fungicidas Industriales , Pirroles , Pirroles/farmacología , Fungicidas Industriales/farmacología , Farmacorresistencia Fúngica/genética , Dioxoles/farmacología , Ascomicetos/efectos de los fármacos , Ascomicetos/genética , Ascomicetos/metabolismo , Mutación , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Enfermedades de las Plantas/microbiología , Glycine max/microbiología , Glycine max/efectos de los fármacos
2.
Mol Plant Pathol ; 25(3): e13425, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38462784

RESUMEN

Phosphatases are important regulators of protein phosphorylation and various cellular processes, and they serve as counterparts to kinases. In this study, our comprehensive analysis of oomycete complete proteomes unveiled the presence of approximately 3833 phosphatases, with most species estimated to have between 100 and 300 putative phosphatases. Further investigation of these phosphatases revealed a significant increase in protein serine/threonine phosphatases (PSP) within oomycetes. In particular, we extensively studied the metallo-dependent protein phosphatase (PPM) within the PSP family in the model oomycete Phytophthora sojae. Our results showed notable differences in the expression patterns of PPMs throughout 10 life stages of P. sojae, indicating their vital roles in various stages of oomycete pathogens. Moreover, we identified 29 PPMs in P. sojae, and eight of them possessed accessory domains in addition to phosphate domains. We investigated the biological function of one PPM protein with an extra PH domain (PPM1); this protein exhibited high expression levels in both asexual developmental and infectious stages. Our analysis confirmed that PPM1 is indeed an active protein phosphatase, and its accessory domain does not affect its phosphatase activity. To delve further into its function, we generated knockout mutants of PPM1 and validated its essential roles in mycelial growth, sporangia and oospore production, as well as infectious stages. To the best of our knowledge, this study provides the first comprehensive inventory of phosphatases in oomycetes and identifies an important phosphatase within the expanded serine/threonine phosphatase group in oomycetes.


Asunto(s)
Oomicetos , Phytophthora , Proteoma/metabolismo , Phytophthora/metabolismo , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , Serina/metabolismo
3.
Mol Plant Pathol ; 25(6): e13468, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38808392

RESUMEN

Phytophthora pathogens possess hundreds of effector genes that exhibit diverse expression patterns during infection, yet how the expression of effector genes is precisely regulated remains largely elusive. Previous studies have identified a few potential conserved transcription factor binding sites (TFBSs) in the promoters of Phytophthora effector genes. Here, we report a MYB-related protein, PsMyb37, in Phytophthora sojae, the major causal agent of root and stem rot in soybean. Yeast one-hybrid and electrophoretic mobility shift assays showed that PsMyb37 binds to the TACATGTA motif, the most prevalent TFBS in effector gene promoters. The knockout mutant of PsMyb37 exhibited significantly reduced virulence on soybean and was more sensitive to oxidative stress. Consistently, transcriptome analysis showed that numerous effector genes associated with suppressing plant immunity or scavenging reactive oxygen species were down-regulated in the PsMyb37 knockout mutant during infection compared to the wild-type P. sojae. Several promoters of effector genes were confirmed to drive the expression of luciferase in a reporter assay. These results demonstrate that a MYB-related transcription factor contributes to the expression of effector genes in P. sojae.


Asunto(s)
Phytophthora , Enfermedades de las Plantas , Regiones Promotoras Genéticas , Factores de Transcripción , Phytophthora/patogenicidad , Phytophthora/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Regiones Promotoras Genéticas/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Glycine max/microbiología , Glycine max/genética , Virulencia/genética
4.
Nat Commun ; 15(1): 4624, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816389

RESUMEN

Variations in chromosome number are occasionally observed among oomycetes, a group that includes many plant pathogens, but the emergence of such variations and their effects on genome and virulence evolution remain ambiguous. We generated complete telomere-to-telomere genome assemblies for Phytophthora sojae, Globisporangium ultimum, Pythium oligandrum, and G. spinosum. Reconstructing the karyotype of the most recent common ancestor in Peronosporales revealed that frequent chromosome fusion and fission drove changes in chromosome number. Centromeres enriched with Copia-like transposons may contribute to chromosome fusion and fission events. Chromosome fusion facilitated the emergence of pathogenicity genes and their adaptive evolution. Effectors tended to duplicate in the sub-telomere regions of fused chromosomes, which exhibited evolutionary features distinct to the non-fused chromosomes. By integrating ancestral genomic dynamics and structural predictions, we have identified secreted Ankyrin repeat-containing proteins (ANKs) as a novel class of effectors in P. sojae. Phylogenetic analysis and experiments further revealed that ANK is a specifically expanded effector family in oomycetes. These results revealed chromosome dynamics in oomycete plant pathogens, and provided novel insights into karyotype and effector evolution.


Asunto(s)
Evolución Molecular , Oomicetos , Filogenia , Telómero , Telómero/genética , Oomicetos/genética , Oomicetos/patogenicidad , Virulencia/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Pythium/genética , Pythium/patogenicidad , Phytophthora/genética , Phytophthora/patogenicidad , Cromosomas/genética , Plantas/microbiología , Plantas/genética , Genoma/genética
5.
Mol Plant ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39030909

RESUMEN

Plant cell walls are a critical site where plants and pathogens continuously struggle for physiological dominance. Here we show that dynamic remodeling of pectin methylesterification of plant cell walls is a component of the physiological and co-evolutionary struggles between hosts and pathogens. A Phytophthora sojae secreted pectin methylesterase (PsPME1) decreases the degree of pectin methylesterification, thus synergizing with an endo-polygalacturonase (PsPG1) to weaken plant cell walls. To counter PsPME1-mediated susceptibility, a plant-derived pectin methylesterase inhibitor protein, GmPMI1, protects pectin to maintain a high methylesterification status. GmPMI1 protects plant cell walls from enzymatic degradation by inhibiting both soybean and P. sojae pectin methylesterases during infection. However, constitutive expression of GmPMI1 disrupted the tradeoff between host growth and defense responses. So, we used AlphaFold structure tools to design a modified form of GmPMI1 (GmPMI1R) which specifically targets and inhibits pectin methylesterases secreted from pathogens but not from the plants. Transient expression of GmPMI1R enhanced plant resistance to oomycetes and fungal pathogens. In summary, our work highlights biochemical modification of the cell wall as an important focal point in the physiological and co-evolutionary conflict between the hosts and microbes and serves as an important proof-of-concept for how rapid advancements in AI-driven structure-based tools can accelerate the prediction of new strategies for plant protection.

6.
Plants (Basel) ; 12(24)2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38140478

RESUMEN

Plant-endophytic microbes affect plant growth, development, nutrition, and resistance to pathogens. However, how endophytic microbial communities change in different strawberry plant compartments after Fusarium pathogen infection has remained elusive. In this study, 16S and internal transcribed spacer rRNA amplicon sequencing were used to systematically investigate changes in the bacterial and fungal diversity and composition in the endophytic compartments (roots, stems, and leaves) of healthy strawberries and strawberries with Fusarium wilt, respectively. The analysis of the diversity, structure, and composition of the bacterial and fungal communities revealed a strong effect of pathogen invasion on the endophytic communities. The bacterial and fungal community diversity was lower in the Fusarium-infected endophytic compartments than in the healthy samples. The relative abundance of certain bacterial and fungal genera also changed after Fusarium wilt infection. The relative abundance of the beneficial bacterial genera Bacillus, Bradyrhizobium, Methylophilus, Sphingobium, Lactobacillus, and Streptomyces, as well as fungal genera Acremonium, Penicillium, Talaromyces, and Trichoderma, were higher in the healthy samples than in the Fusarium wilt samples. The relative abundance of Fusarium in the infected samples was significantly higher than that in the healthy samples, consistent with the field observations and culture isolation results for strawberry wilt. Our findings provide a theoretical basis for the isolation, identification, and control of strawberry wilt disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA